\begin{tabular}{|l|l|l|}
\hline Step & \multicolumn{1}{|c|}{Statements} & Reason \\
\hline 1 & [tex]$-6=-\frac{2}{3}(x+12)+\frac{1}{3}x$[/tex] & Given \\
\hline 2 & [tex]$-6=-\frac{2}{3}x-8+\frac{1}{3}x$[/tex] & Distributive Property \\
\hline 3 & [tex]$-6=-\frac{1}{3}x-8$[/tex] & Combine Like Terms \\
\hline 4 & [tex]$2=-\frac{1}{3}x$[/tex] & Addition Property of Equality \\
\hline 5 & [tex]$-6=x$[/tex] & Multiplication Property of Equality \\
\hline 6 & [tex]$x=-6$[/tex] & Symmetric Property \\
\hline
\end{tabular}



Answer :

Certainly! Let's go through each step of solving the equation in detail:

1. Given Equation:
[tex]\[ -6 = -\frac{2}{3}(x + 12) + \frac{1}{3}x \][/tex]
This is the given equation we need to solve.

2. Distribute the [tex]\(-\frac{2}{3}\)[/tex] to the terms inside the parenthesis:
[tex]\[ -6 = -\frac{2}{3}x - \frac{2}{3} \times 12 + \frac{1}{3}x \][/tex]
Simplify the multiplication inside the parenthesis:
[tex]\[ -6 = -\frac{2}{3}x - 8 + \frac{1}{3}x \][/tex]

3. Combine like terms:
Combine the terms involving [tex]\(x\)[/tex]:
[tex]\[ -\frac{2}{3}x + \frac{1}{3}x = -\frac{1}{3}x \][/tex]
So, we have:
[tex]\[ -6 = -\frac{1}{3}x - 8 \][/tex]

4. Add 8 to both sides (Addition property of equality):
[tex]\[ -6 + 8 = -\frac{1}{3}x \][/tex]
Simplify the left side:
[tex]\[ 2 = -\frac{1}{3}x \][/tex]

5. Multiply both sides by [tex]\(-3\)[/tex] (Multiplication property of equality):
[tex]\[ 2 \times -3 = x \][/tex]
Simplify the multiplication:
[tex]\[ -6 = x \][/tex]

6. Symmetric property:
Using the symmetric property of equality, we write the final result:
[tex]\[ x = -6 \][/tex]

Therefore, the solution to the equation is:
[tex]\[ x = -6 \][/tex]