Try These:

1. Find:
(a) [tex]15 \times (-16)[/tex]
(b) [tex]21 \times (-32)[/tex]
(c) [tex](-42) \times 12[/tex]
(d) [tex]-55 \times 15[/tex]

2. Check if:
(a) [tex]25 \times (-21) = (-25) \times 21[/tex]
(b) [tex](-23) \times 20 = 23 \times (-20)[/tex]

Write five more such examples.



Answer :

Alright, let's break down each part of the given problem step-by-step.

### Part 1: Find the Products

(a) [tex]\( 15 \times (-16) \)[/tex]

The product of a positive number and a negative number is negative. So, multiplying:

[tex]\[ 15 \times (-16) = -240 \][/tex]

(b) [tex]\( 21 \times (-32) \)[/tex]

Similarly, the product of a positive number and a negative number is negative. So, multiplying:

[tex]\[ 21 \times (-32) = -672 \][/tex]

(c) [tex]\( (-42) \times 12 \)[/tex]

In this case, the product of a negative number and a positive number is also negative. So, multiplying:

[tex]\[ (-42) \times 12 = -504 \][/tex]

(d) [tex]\( -55 \times 15 \)[/tex]

Again, the product of a negative number and a positive number is negative. So, multiplying:

[tex]\[ -55 \times 15 = -825 \][/tex]

### Part 2: Check if the expressions are equal

(a) [tex]\( 25 \times (-21) = (-25) \times 21 \)[/tex]

First calculate both sides:
- [tex]\( 25 \times (-21) = -525 \)[/tex]
- [tex]\( (-25) \times 21 = -525 \)[/tex]

So, [tex]\( 25 \times (-21) = (-25) \times 21 \)[/tex] is indeed True.

(b) [tex]\( (-23) \times 20 = 23 \times (-20) \)[/tex]

First calculate both sides:
- [tex]\( (-23) \times 20 = -460 \)[/tex]
- [tex]\( 23 \times (-20) = -460 \)[/tex]

Thus, [tex]\( (-23) \times 20 = 23 \times (-20) \)[/tex] is again True.

### Five More Examples

1. [tex]\( (-10) \times 3 = 10 \times (-3) \)[/tex]

First calculate both sides:
- [tex]\( (-10) \times 3 = -30 \)[/tex]
- [tex]\( 10 \times (-3) = -30 \)[/tex]

Thus, [tex]\( (-10) \times 3 = 10 \times (-3) \)[/tex] is True.

2. [tex]\( 7 \times (-2) = (-7) \times 2 \)[/tex]

First calculate both sides:
- [tex]\( 7 \times (-2) = -14 \)[/tex]
- [tex]\( (-7) \times 2 = -14 \)[/tex]

So, [tex]\( 7 \times (-2) = (-7) \times 2 \)[/tex] is True.

3. [tex]\( (-5) \times 9 = 5 \times (-9) \)[/tex]

First calculate both sides:
- [tex]\( (-5) \times 9 = -45 \)[/tex]
- [tex]\( 5 \times (-9) = -45 \)[/tex]

Thus, [tex]\( (-5) \times 9 = 5 \times (-9) \)[/tex] is True.

4. [tex]\( 14 \times (-8) = (-14) \times 8 \)[/tex]

First calculate both sides:
- [tex]\( 14 \times (-8) = -112 \)[/tex]
- [tex]\( (-14) \times 8 = -112 \)[/tex]

Therefore, [tex]\( 14 \times (-8) = (-14) \times 8 \)[/tex] is True.

5. [tex]\( (-3) \times 11 = 3 \times (-11) \)[/tex]

First calculate both sides:
- [tex]\( (-3) \times 11 = -33 \)[/tex]
- [tex]\( 3 \times (-11) = -33 \)[/tex]

So, [tex]\( (-3) \times 11 = 3 \times (-11) \)[/tex] is True.

To summarize, all given relations and additional examples hold true as their respective products are equal when considering the sign changes.