Answer:
[tex] - 3 {x}^{ - 1} [/tex] + C
Step-by-step explanation:
∫ (3/x^2) =
[tex]∫3 {x}^{ - 2} [/tex]
[tex] = 3 \frac{ {x}^{ - 2 + 1} }{ - 2 + 1} [/tex]
[tex] = 3 \times - \frac{1}{1} \times {x}^{- 1} [/tex]
[tex] = - 3 {x}^{ - 1} [/tex] + C, where C is the constant of Integration