Which linear function represents the line given by the point-slope equation [tex] y + 7 = \frac{2}{3}(x + 6) [/tex]?

A. [tex] f(x) = \frac{2}{3} x - 11 [/tex]
B. [tex] \mu(x) = \frac{2}{3} x - 1 [/tex]
C. [tex] f(x) = \frac{2}{3} x + 3 [/tex]
D. [tex] f(x) = \frac{2}{3} x + 13 [/tex]



Answer :

Sure! Let's convert the point-slope form equation [tex]\( y + 7 = \frac{2}{3}(x + 6) \)[/tex] into the slope-intercept form [tex]\( y = mx + b \)[/tex].

### Step-by-step solution:

1. Starting Equation:
[tex]\[ y + 7 = \frac{2}{3}(x + 6) \][/tex]

2. Distribute [tex]\(\frac{2}{3}\)[/tex] through the terms inside the parentheses:
[tex]\[ y + 7 = \frac{2}{3}x + \frac{2}{3} \cdot 6 \][/tex]

3. Multiply [tex]\(\frac{2}{3}\)[/tex] by 6:
[tex]\[ y + 7 = \frac{2}{3}x + 4 \][/tex]

4. Isolate [tex]\( y \)[/tex] by subtracting 7 from both sides:
[tex]\[ y = \frac{2}{3}x + 4 - 7 \][/tex]

5. Simplify the constants:
[tex]\[ y = \frac{2}{3}x - 3 \][/tex]

So, the slope-intercept form of the line is [tex]\( y = \frac{2}{3}x - 3 \)[/tex].

None of the options provided exactly match this equation, but the correct transformation of the given point-slope form is:

[tex]\[ y = \frac{2}{3}x - 3 \][/tex]

Therefore, the correct linear function that represents the line given by the point-slope equation [tex]\( y + 7 = \frac{2}{3}(x + 6) \)[/tex] is [tex]\( y = \frac{2}{3}x - 3 \)[/tex].