Paul creates the diagram to help him factor [tex]4x^2 + x - 5[/tex]. Which terms should Paul write in squares [tex]M_1[/tex] and [tex]M_2[/tex] by using double grouping? His diagram is incomplete.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
& & \\
\hline
& 4x^2 & M_1 \\
\hline
& M_2 & -5 \\
\hline
\end{tabular}
\][/tex]

A. [tex]5x[/tex] and [tex]-4x[/tex]
B. [tex]-5x[/tex] and [tex]4x[/tex]
C. [tex]-2x[/tex] and [tex]10x[/tex]
D. [tex]2x[/tex] and [tex]-10x[/tex]



Answer :

To factor the quadratic expression [tex]\(4x^2 + x - 5\)[/tex] by grouping, we need to find two numbers that multiply to [tex]\(4x^2 \times (-5) = -20x^2\)[/tex] and add to the middle coefficient, which is [tex]\(x\)[/tex].

Step 1: Identify the coefficients of the quadratic expression [tex]\(4x^2 + x - 5\)[/tex]:

- [tex]\(a = 4\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = -5\)[/tex]

Step 2: Find two numbers that multiply to [tex]\(a \cdot c = 4 \cdot (-5) = -20\)[/tex], and add to [tex]\(b = 1\)[/tex].

Let's list the factor pairs of [tex]\(-20\)[/tex]:

- [tex]\( (1, -20) \)[/tex] which sums to [tex]\(-19\)[/tex]
- [tex]\((-1, 20)\)[/tex] which sums to [tex]\(19\)[/tex]
- [tex]\( (2, -10) \)[/tex] which sums to [tex]\(-8\)[/tex]
- [tex]\((-2, 10)\)[/tex] which sums to [tex]\(8\)[/tex]
- [tex]\( (4, -5) \)[/tex] which sums to [tex]\(-1\)[/tex]
- [tex]\((-4, 5)\)[/tex] which sums to [tex]\(1\)[/tex]

From these pairs, we see that [tex]\(-4\)[/tex] and [tex]\(5\)[/tex] are the numbers that multiply to [tex]\(-20x^2\)[/tex] and add to [tex]\(1\)[/tex]. So, we rewrite the middle term [tex]\(x\)[/tex] as [tex]\(-4x + 5x\)[/tex].

Step 3: Rewrite the expression [tex]\(4x^2 + x - 5\)[/tex] using these values:

[tex]\[4x^2 + x - 5 = 4x^2 - 4x + 5x - 5\][/tex]

Step 4: Group the terms in pairs:

[tex]\[(4x^2 - 4x) + (5x - 5)\][/tex]

Step 5: Factor out the greatest common factor (GCF) from each pair:

[tex]\[4x(x - 1) + 5(x - 1)\][/tex]

Step 6: Factor out the common binomial factor [tex]\((x - 1)\)[/tex]:

[tex]\[(4x + 5)(x - 1)\][/tex]

Thus, Paul should use [tex]\(-4x\)[/tex] and [tex]\(5x\)[/tex] in the squares [tex]\(M_1\)[/tex] and [tex]\(M_2\)[/tex].

Therefore, the correct option is:

- [tex]\({5x \text{ and } -4x}\)[/tex]

Paul should write [tex]\(5x\)[/tex] in [tex]\(M_1\)[/tex] and [tex]\(-4x\)[/tex] in [tex]\(M_2\)[/tex].