Answer :
Sure! Let's match the given equations with their respective slopes ([tex]\(m\)[/tex]) and [tex]\(y\)[/tex]-intercepts ([tex]\(b\)[/tex]).
We start by identifying the slope ([tex]\(m\)[/tex]) and [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) for each equation:
1. [tex]\(y = -3x + 4\)[/tex]
- Slope ([tex]\(m\)[/tex]): -3
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 4
2. [tex]\(y = 7\)[/tex]
- Slope ([tex]\(m\)[/tex]): 0 (since there is no [tex]\(x\)[/tex] term, the slope is 0)
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 7
3. [tex]\(y = 15x - 7\)[/tex]
- Slope ([tex]\(m\)[/tex]): 15
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): -7
4. [tex]\(y = -1.5x - 4\)[/tex]
- Slope ([tex]\(m\)[/tex]): -1.5
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): -4
5. [tex]\(y = 3x\)[/tex]
- Slope ([tex]\(m\)[/tex]): 3
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 0 (since no constant term is present, the [tex]\(y\)[/tex]-intercept is 0)
Now we need to match these equations with the given pairs of [tex]\(m\)[/tex] and [tex]\(b\)[/tex]:
1. [tex]\(m = 1.5\)[/tex], [tex]\(b = -7\)[/tex]
- No matching equation, as none of the equations have a slope of 1.5 and [tex]\(y\)[/tex]-intercept of -7.
2. [tex]\(m = 0\)[/tex], [tex]\(b = 7\)[/tex]
- Matching equation: [tex]\(y = 7\)[/tex]
3. [tex]\(m = 3\)[/tex], [tex]\(b = 0\)[/tex]
- Matching equation: [tex]\(y = 3x\)[/tex]
4. [tex]\(m = -1.5\)[/tex], [tex]\(b = -4\)[/tex]
- Matching equation: [tex]\(y = -1.5x - 4\)[/tex]
5. [tex]\(m = -3\)[/tex], [tex]\(b = 4\)[/tex]
- Matching equation: [tex]\(y = -3x + 4\)[/tex]
So, the matched pairs of equations and their slopes and [tex]\(y\)[/tex]-intercepts are:
1. [tex]\(m = 0\)[/tex], [tex]\(b = 7\)[/tex]: [tex]\(y = 7\)[/tex]
2. [tex]\(m = 3\)[/tex], [tex]\(b = 0\)[/tex]: [tex]\(y = 3x\)[/tex]
3. [tex]\(m = -1.5\)[/tex], [tex]\(b = -4\)[/tex]: [tex]\(y = -1.5x - 4\)[/tex]
4. [tex]\(m = -3\)[/tex], [tex]\(b = 4\)[/tex]: [tex]\(y = -3x + 4\)[/tex]
Therefore, the resulting matched equations are:
[tex]\[ y = 7, \quad y = 3x, \quad y = -1.5x - 4, \quad y = -3x + 4 \][/tex]
We start by identifying the slope ([tex]\(m\)[/tex]) and [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) for each equation:
1. [tex]\(y = -3x + 4\)[/tex]
- Slope ([tex]\(m\)[/tex]): -3
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 4
2. [tex]\(y = 7\)[/tex]
- Slope ([tex]\(m\)[/tex]): 0 (since there is no [tex]\(x\)[/tex] term, the slope is 0)
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 7
3. [tex]\(y = 15x - 7\)[/tex]
- Slope ([tex]\(m\)[/tex]): 15
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): -7
4. [tex]\(y = -1.5x - 4\)[/tex]
- Slope ([tex]\(m\)[/tex]): -1.5
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): -4
5. [tex]\(y = 3x\)[/tex]
- Slope ([tex]\(m\)[/tex]): 3
- [tex]\(y\)[/tex]-Intercept ([tex]\(b\)[/tex]): 0 (since no constant term is present, the [tex]\(y\)[/tex]-intercept is 0)
Now we need to match these equations with the given pairs of [tex]\(m\)[/tex] and [tex]\(b\)[/tex]:
1. [tex]\(m = 1.5\)[/tex], [tex]\(b = -7\)[/tex]
- No matching equation, as none of the equations have a slope of 1.5 and [tex]\(y\)[/tex]-intercept of -7.
2. [tex]\(m = 0\)[/tex], [tex]\(b = 7\)[/tex]
- Matching equation: [tex]\(y = 7\)[/tex]
3. [tex]\(m = 3\)[/tex], [tex]\(b = 0\)[/tex]
- Matching equation: [tex]\(y = 3x\)[/tex]
4. [tex]\(m = -1.5\)[/tex], [tex]\(b = -4\)[/tex]
- Matching equation: [tex]\(y = -1.5x - 4\)[/tex]
5. [tex]\(m = -3\)[/tex], [tex]\(b = 4\)[/tex]
- Matching equation: [tex]\(y = -3x + 4\)[/tex]
So, the matched pairs of equations and their slopes and [tex]\(y\)[/tex]-intercepts are:
1. [tex]\(m = 0\)[/tex], [tex]\(b = 7\)[/tex]: [tex]\(y = 7\)[/tex]
2. [tex]\(m = 3\)[/tex], [tex]\(b = 0\)[/tex]: [tex]\(y = 3x\)[/tex]
3. [tex]\(m = -1.5\)[/tex], [tex]\(b = -4\)[/tex]: [tex]\(y = -1.5x - 4\)[/tex]
4. [tex]\(m = -3\)[/tex], [tex]\(b = 4\)[/tex]: [tex]\(y = -3x + 4\)[/tex]
Therefore, the resulting matched equations are:
[tex]\[ y = 7, \quad y = 3x, \quad y = -1.5x - 4, \quad y = -3x + 4 \][/tex]