Select the correct answer.

What is [tex]\sqrt{-16}+\sqrt{49}[/tex] written as a complex number in the form [tex]a+b i[/tex]?

A. [tex]4+7 i[/tex]
B. [tex]-4+7 i[/tex]
C. [tex]7+4 i[/tex]
D. [tex]7-4 i[/tex]



Answer :

To determine [tex]\(\sqrt{-16} + \sqrt{49}\)[/tex] in the form [tex]\(a + b i\)[/tex], we need to evaluate each term separately and then combine the results.

First, let’s find [tex]\(\sqrt{-16}\)[/tex]:

Since [tex]\(-16\)[/tex] is a negative number, its square root will involve an imaginary component. Recall that [tex]\(\sqrt{-1} = i\)[/tex].

[tex]\[ \sqrt{-16} = \sqrt{16 \cdot (-1)} = \sqrt{16} \cdot \sqrt{-1} = 4i \][/tex]

Next, let's find [tex]\(\sqrt{49}\)[/tex]:

[tex]\[ \sqrt{49} = 7 \][/tex]

Now, combine these results:

[tex]\[ \sqrt{-16} + \sqrt{49} = 4i + 7 \][/tex]

To express this in the standard complex number form [tex]\(a + bi\)[/tex], the real part [tex]\(a\)[/tex] is 7 and the imaginary part [tex]\(b\)[/tex] is 4.

Therefore, the final expression is:

[tex]\[ 7 + 4i \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{7 + 4i} \][/tex]

This corresponds to option C.