If [tex][tex]$f(x)=2x+1$[/tex][/tex] and [tex][tex]$g(x)=4x$[/tex][/tex], what is [tex][tex]$f(g(-3))$[/tex][/tex]?

A. [tex]\(-16\)[/tex]
B. 12
C. 26
D. [tex]\(-23\)[/tex]



Answer :

Certainly! Let's solve the problem step-by-step to find [tex]\( f(g(-3)) \)[/tex] given the functions [tex]\( f(x) = 2x + 1 \)[/tex] and [tex]\( g(x) = 4x \)[/tex].

1. Calculate [tex]\( g(-3) \)[/tex]:
- The function [tex]\( g(x) \)[/tex] is given as [tex]\( g(x) = 4x \)[/tex].
- Substitute [tex]\( x = -3 \)[/tex] into the function [tex]\( g \)[/tex]:
[tex]\[ g(-3) = 4(-3) = -12 \][/tex]

2. Calculate [tex]\( f(g(-3)) \)[/tex]:
- We have already found that [tex]\( g(-3) = -12 \)[/tex].
- Next, we need to find [tex]\( f(g(-3)) \)[/tex], which is [tex]\( f(-12) \)[/tex].
- The function [tex]\( f(x) \)[/tex] is given as [tex]\( f(x) = 2x + 1 \)[/tex].
- Substitute [tex]\( x = -12 \)[/tex] into the function [tex]\( f \)[/tex]:
[tex]\[ f(-12) = 2(-12) + 1 = -24 + 1 = -23 \][/tex]

Therefore, [tex]\( f(g(-3)) = -23 \)[/tex].

So, the correct answer is [tex]\(\boxed{-23}\)[/tex].