Select the correct answer.

One solution to a quadratic function, [tex]h[/tex], is given:
[tex]-4 + 7i[/tex]

Which statement is true?
A. Function [tex]h[/tex] has no other solutions.
B. The other solution to function [tex]h[/tex] is [tex]-4 - 7i[/tex].
C. The other solution to function [tex]h[/tex] is [tex]4 - 7i[/tex].
D. The other solution to function [tex]h[/tex] is [tex]4 + 7i[/tex].



Answer :

Let's solve this step by step to determine the correct answer.

We are given one solution to the quadratic function [tex]\( h \)[/tex]:
[tex]\[ -4 + 7i \][/tex]

### Step 1: Identify the nature of the given solution
The given solution is a complex number. For quadratic functions with real coefficients, the solutions appear in conjugate pairs. This means if [tex]\( a + bi \)[/tex] is a solution, then [tex]\( a - bi \)[/tex] must also be a solution.

### Step 2: Find the conjugate of the given solution
The conjugate of a complex number [tex]\( a + bi \)[/tex] is [tex]\( a - bi \)[/tex]. Here, our complex number is [tex]\( -4 + 7i \)[/tex].

- Real part ([tex]\( a \)[/tex]): [tex]\(-4\)[/tex]
- Imaginary part ([tex]\( bi \)[/tex]): [tex]\(7i\)[/tex]

The conjugate will keep the real part the same and change the sign of the imaginary part:
[tex]\[ -4 - 7i \][/tex]

### Step 3: Match the conjugate to the options given
Now we need to match this conjugate solution with the options provided:

A. Function [tex]\( h \)[/tex] has no other solutions.
B. The other solution to function [tex]\( h \)[/tex] is [tex]\( -4 - 7i \)[/tex].
C. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 - 7i \)[/tex].
D. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 + 7i \)[/tex].

Option B states that the other solution is [tex]\( -4 - 7i \)[/tex], which matches our conjugate.

### Conclusion
The correct answer is:
[tex]\[ \boxed{\text{B. The other solution to function } h \text{ is } -4-7 i.} \][/tex]