3) Simplify [tex]\frac{12k + 54}{12k}[/tex].

A) [tex]\frac{5k - 3}{2k}[/tex]
B) [tex]\frac{6}{7k - 1}[/tex]
C) [tex]\frac{9}{3k + 10}[/tex]
D) [tex]\frac{2k + 9}{2k}[/tex]



Answer :

Sure, let's simplify the given fraction step by step.

We start with the fraction:

[tex]\[ \frac{12k + 54}{12k} \][/tex]

First, we'll split the fraction into two separate terms:

[tex]\[ \frac{12k}{12k} + \frac{54}{12k} \][/tex]

Next, we'll simplify each term individually.

The first term:

[tex]\[ \frac{12k}{12k} = 1 \][/tex]

The second term:

[tex]\[ \frac{54}{12k} = \frac{54}{12} \cdot \frac{1}{k} = \frac{9}{2k} \][/tex]

Now, we combine the simplified terms:

[tex]\[ 1 + \frac{9}{2k} \][/tex]

Looking at the options provided:

A) [tex]\(\frac{5k-3}{2k}\)[/tex]

B) [tex]\(\frac{6}{7k-1}\)[/tex]

C) [tex]\(\frac{9}{3k+10}\)[/tex]

D) [tex]\(\frac{2k+9}{2k}\)[/tex]

We can see that option D matches our simplified form:

[tex]\[ 1 + \frac{9}{2k} = \frac{2k}{2k} + \frac{9}{2k} = \frac{2k+9}{2k} \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{D} \][/tex]