Add the following polynomials. Your answer should be an expanded polynomial in standard form.

[tex]\[ \left(-5n^4 + 8\right) + \left(5n^4 + 8n^3 + 3n^2\right) = \square \][/tex]



Answer :

To add the given polynomials [tex]\((-5n^4 + 8)\)[/tex] and [tex]\((5n^4 + 8n^3 + 3n^2)\)[/tex], follow these steps:

1. Write down each polynomial:
[tex]\[ (-5n^4 + 8) \quad \text{and} \quad (5n^4 + 8n^3 + 3n^2) \][/tex]

2. Align the like terms:
Ensure that terms with the same degree of [tex]\(n\)[/tex] are aligned to see clearly which terms can be added directly. In this case:
[tex]\[ -5n^4 + 8 \][/tex]
[tex]\[ 5n^4 + 8n^3 + 3n^2 \][/tex]

3. Add the corresponding like terms:
- The [tex]\(n^4\)[/tex] terms: [tex]\((-5n^4 + 5n^4)\)[/tex]
- The [tex]\(n^3\)[/tex] term is only in one polynomial: [tex]\(8n^3\)[/tex]
- The [tex]\(n^2\)[/tex] term is only in one polynomial: [tex]\(3n^2\)[/tex]
- The constant term: [tex]\(8\)[/tex]

4. Combine the like terms:
- For the [tex]\(n^4\)[/tex] terms: [tex]\(-5n^4 + 5n^4 = 0\)[/tex]
- For the [tex]\(n^3\)[/tex] term: [tex]\(8n^3\)[/tex]
- For the [tex]\(n^2\)[/tex] term: [tex]\(3n^2\)[/tex]
- For the constant term: [tex]\(8\)[/tex]

5. Write the final expanded polynomial:
Since the [tex]\(n^4\)[/tex] terms cancel each other out, we are left with:
[tex]\[ 8n^3 + 3n^2 + 8 \][/tex]

Thus, the sum of the polynomials is:
[tex]\[ \left(-5n^4 + 8\right) + \left(5n^4 + 8n^3 + 3n^2\right) = 8n^3 + 3n^2 + 8 \][/tex]