Answered

If [tex]\( f(x) = x^3 - 2x^2 + 3x - 5 \)[/tex] and [tex]\( g(x) = x^2 + x - 1 \)[/tex], perform the following calculation:

[tex]\[ f(-5) = \][/tex]

Type your answer.



Answer :

To solve the problem and find the value of [tex]\( f(-5) \)[/tex] for the function [tex]\( f(x) = x^3 - 2x^2 + 3x - 5 \)[/tex], we need to evaluate the function at [tex]\( x = -5 \)[/tex].

Let's break this down step-by-step:

1. Substitute [tex]\( x = -5 \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(-5) = (-5)^3 - 2(-5)^2 + 3(-5) - 5 \][/tex]

2. Calculate each term individually:

[tex]\[ (-5)^3 = -125 \][/tex]

[tex]\[ -2(-5)^2 = -2 \cdot 25 = -50 \][/tex]

[tex]\[ 3(-5) = -15 \][/tex]

3. Now, combine these results and simplify:

[tex]\[ f(-5) = -125 - 50 - 15 - 5 \][/tex]

4. Add these values together:

[tex]\[ -125 - 50 = -175 \][/tex]

[tex]\[ -175 - 15 = -190 \][/tex]

[tex]\[ -190 - 5 = -195 \][/tex]

Thus, the value of [tex]\( f(-5) \)[/tex] is [tex]\( -195 \)[/tex].