Which choice is equivalent to the product below when [tex][tex]$x\ \textgreater \ 0$[/tex][/tex]?

[tex]\sqrt{\frac{6}{x}} \cdot \sqrt{\frac{x^2}{24}}[/tex]

A. [tex]\sqrt{\frac{x}{2}}[/tex]

B. [tex]\frac{x}{2}[/tex]

C. [tex]\frac{x}{4}[/tex]

D. [tex]\frac{\sqrt{x}}{2}[/tex]



Answer :

To determine which choice is equivalent to the given expression [tex]\(\sqrt{\frac{6}{x}} \cdot \sqrt{\frac{x^2}{24}}\)[/tex] when [tex]\(x > 0\)[/tex], we will simplify the expression step-by-step.

First, let's rewrite the given expression as a single square root:

[tex]\[ \sqrt{\frac{6}{x}} \cdot \sqrt{\frac{x^2}{24}} = \sqrt{\left( \frac{6}{x} \right) \cdot \left( \frac{x^2}{24} \right)} \][/tex]

Next, we combine the fractions under a single square root:

[tex]\[ \sqrt{\frac{6 \cdot x^2}{x \cdot 24}} = \sqrt{\frac{6x^2}{24x}} \][/tex]

We can simplify the fraction inside the square root:

[tex]\[ \sqrt{\frac{6x^2}{24x}} = \sqrt{\frac{6x}{24}} = \sqrt{\frac{x}{4}} \][/tex]

Further simplifying the square root:

[tex]\[ \sqrt{\frac{x}{4}} = \frac{\sqrt{x}}{\sqrt{4}} = \frac{\sqrt{x}}{2} \][/tex]

We have now simplified the given expression to:

[tex]\[ \sqrt{\frac{6}{x}} \cdot \sqrt{\frac{x^2}{24}} = \frac{\sqrt{x}}{2} \][/tex]

Therefore, the choice that is equivalent to the given expression is:

[tex]\[ \boxed{D} \][/tex]