Which ordered pair is included in the solution set to the following system?

[tex]\[
\begin{array}{l}
y \ \textless \ x^2 + 3 \\
y \ \textgreater \ x^2 - 2x + 8
\end{array}
\][/tex]

A. [tex]$(-4, 2)$[/tex]
B. [tex]$(0, 6)$[/tex]
C. [tex]$(1, 12)$[/tex]
D. [tex]$(4, 18)$[/tex]



Answer :

To determine which ordered pair is included in the solution set to the given system of inequalities, we will evaluate each pair against the inequalities provided. The system of inequalities is:

1. [tex]\( y < x^2 + 3 \)[/tex]
2. [tex]\( y > x^2 - 2x + 8 \)[/tex]

Let's check each given pair [tex]\((x, y)\)[/tex] one by one.

### For the pair [tex]\((-4, 2)\)[/tex]:

1. Inequality check for [tex]\( y < x^2 + 3 \)[/tex]:
[tex]\[ 2 < (-4)^2 + 3 \implies 2 < 16 + 3 \implies 2 < 19 \quad \text{(True)} \][/tex]
2. Inequality check for [tex]\( y > x^2 - 2x + 8 \)[/tex]:
[tex]\[ 2 > (-4)^2 - 2(-4) + 8 \implies 2 > 16 + 8 + 8 \implies 2 > 32 \quad \text{(False)} \][/tex]

Since the second inequality is false, the pair [tex]\((-4, 2)\)[/tex] is not included in the solution set.

### For the pair [tex]\((0, 6)\)[/tex]:

1. Inequality check for [tex]\( y < x^2 + 3 \)[/tex]:
[tex]\[ 6 < 0^2 + 3 \implies 6 < 3 \quad \text{(False)} \][/tex]

Since the first inequality is false, the pair [tex]\((0, 6)\)[/tex] is not included in the solution set.

### For the pair [tex]\((1, 12)\)[/tex]:

1. Inequality check for [tex]\( y < x^2 + 3 \)[/tex]:
[tex]\[ 12 < 1^2 + 3 \implies 12 < 1 + 3 \implies 12 < 4 \quad \text{(False)} \][/tex]

Since the first inequality is false, the pair [tex]\((1, 12)\)[/tex] is not included in the solution set.

### For the pair [tex]\((4, 18)\)[/tex]:

1. Inequality check for [tex]\( y < x^2 + 3 \)[/tex]:
[tex]\[ 18 < 4^2 + 3 \implies 18 < 16 + 3 \implies 18 < 19 \quad \text{(True)} \][/tex]
2. Inequality check for [tex]\( y > x^2 - 2x + 8 \)[/tex]:
[tex]\[ 18 > 4^2 - 2(4) + 8 \implies 18 > 16 - 8 + 8 \implies 18 > 16 \quad \text{(True)} \][/tex]

Since both inequalities are true, the pair [tex]\((4, 18)\)[/tex] is included in the solution set.

### Conclusion:
The ordered pair that is included in the solution set to the given system of inequalities is:
[tex]\[ (4, 18) \][/tex]