Answer :

To solve the problem of dividing the polynomial [tex]\(4x^2 + 3x - 1\)[/tex] by [tex]\(x - 2\)[/tex], we use polynomial long division. Here's the detailed step-by-step process:

1. Setup
[tex]\[ \text{Dividend: } 4x^2 + 3x - 1 \][/tex]
[tex]\[ \text{Divisor: } x - 2 \][/tex]

2. First Division Step:
- Divide the leading term of the dividend ([tex]\(4x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the first term of the quotient:
[tex]\[ \frac{4x^2}{x} = 4x \][/tex]

3. Multiply and Subtract:
- Multiply [tex]\(4x\)[/tex] by the divisor ([tex]\(x - 2\)[/tex]):
[tex]\[ 4x \cdot (x - 2) = 4x^2 - 8x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (4x^2 + 3x - 1) - (4x^2 - 8x) = 3x + 8x - 1 = 11x - 1 \][/tex]

4. Second Division Step:
- Now, divide the leading term of the new polynomial ([tex]\(11x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]):
[tex]\[ \frac{11x}{x} = 11 \][/tex]

5. Multiply and Subtract:
- Multiply [tex]\(11\)[/tex] by the divisor ([tex]\(x - 2\)[/tex]):
[tex]\[ 11 \cdot (x - 2) = 11x - 22 \][/tex]
- Subtract this from the current polynomial:
[tex]\[ (11x - 1) - (11x - 22) = -1 + 22 = 21 \][/tex]

Thus, the quotient is [tex]\(4x + 11\)[/tex] and the remainder is [tex]\(21\)[/tex].

So, the remainder when [tex]\(4x^2 + 3x - 1\)[/tex] is divided by [tex]\(x - 2\)[/tex] is [tex]\(\boxed{21}\)[/tex].