The table shows ordered pairs of the function [tex]y = 16 + 0.5x[/tex].

Which ordered pair could be the missing values represented by [tex](x, y)[/tex]?

A. [tex](0, 18)[/tex]
B. [tex](5, 19.5)[/tex]
C. [tex](8, 20)[/tex]
D. [tex](10, 21.5)[/tex]



Answer :

To determine which of the given ordered pairs \((x, y)\) fit the function \( y = 16 + 0.5x \), we need to verify each pair by substituting the \( x \) value into the equation and checking if the resulting \( y \) value matches the given \( y \) value.

Let's check each pair one by one:

1. Pair \((0, 18)\):
[tex]\[ y = 16 + 0.5 \cdot 0 \][/tex]
[tex]\[ y = 16 + 0 = 16 \][/tex]
The \( y \) value should be 16, but the given \( y \) value is 18. Therefore, \((0, 18)\) does not fit the function.

2. Pair \((5, 19.5)\):
[tex]\[ y = 16 + 0.5 \cdot 5 \][/tex]
[tex]\[ y = 16 + 2.5 = 18.5 \][/tex]
The \( y \) value should be 18.5, but the given \( y \) value is 19.5. Therefore, \((5, 19.5)\) does not fit the function.

3. Pair \((8, 20)\):
[tex]\[ y = 16 + 0.5 \cdot 8 \][/tex]
[tex]\[ y = 16 + 4 = 20 \][/tex]
The \( y \) value is 20, which matches the given \( y \) value. Therefore, \((8, 20)\) fits the function.

4. Pair \((10, 21.5)\):
[tex]\[ y = 16 + 0.5 \cdot 10 \][/tex]
[tex]\[ y = 16 + 5 = 21 \][/tex]
The \( y \) value should be 21, but the given \( y \) value is 21.5. Therefore, \((10, 21.5)\) does not fit the function.

Only the ordered pair \((8, 20)\) fits the function \( y = 16 + 0.5x \). Therefore, the missing values represented by \((x, y)\) are:
[tex]\[ (8, 20) \][/tex]