Answer :

To find the complex number \( x \) such that \( (3 - 4i) \cdot x = 25 \):

1. Let \( x = a + bi \), where \( a \) and \( b \) are real numbers.
2. Multiply the complex numbers:
[tex]\[ (3 - 4i)(a + bi) \][/tex]
3. Use the distributive property:
[tex]\[ (3 - 4i)(a + bi) = 3a + 3bi - 4ai - 4i^2 \][/tex]
4. Recall that \( i^2 = -1 \):
[tex]\[ \Rightarrow 3a + 3bi - 4ai + 4b \][/tex]
5. Separate the real and imaginary parts:
- Real part: \( 3a + 4b \)
- Imaginary part: \( 3b - 4a \)

6. Set up the system of linear equations:
[tex]\[ \begin{cases} 3a + 4b = 25 \\ 3b - 4a = 0 \\ \end{cases} \][/tex]

7. Solve the system of equations to find \( a \) and \( b \):
- From the second equation \( 3b - 4a = 0 \):
[tex]\[ b = \frac{4}{3}a \][/tex]

- Substitute \( b \) in the first equation:
[tex]\[ 3a + 4\left(\frac{4}{3}a\right) = 25 \][/tex]
[tex]\[ 3a + \frac{16}{3}a = 25 \][/tex]
[tex]\[ 9a + 16a = 75 \][/tex]
[tex]\[ 25a = 75 \][/tex]
[tex]\[ a = 3 \][/tex]

- Substitute \( a = 3 \) back into \( b = \frac{4}{3}a \):
[tex]\[ b = \frac{4}{3} \cdot 3 = 4 \][/tex]

8. Thus, the complex number we are looking for is:
[tex]\[ x = 3 + 4i \][/tex]

So, the correct answer is [tex]\( \boxed{3+4i} \)[/tex].