The volume of a pond being studied for the effects of acid rain is 35 kiloliters ( [tex]$kL$[/tex] ). There are 1,000 liters ( [tex]$L$[/tex] ) in [tex]$1 kL$[/tex], and [tex]$1 \times 10^6$[/tex] microliters ( [tex]$\mu L$[/tex] ) in [tex]$1 L$[/tex].

What is the volume of this pond in microliters?

A. [tex]$3.5 \times 10^4 \mu L$[/tex]

B. [tex]$3.5 \times 10^6 \mu L$[/tex]

C. [tex]$3.5 \times 10^7 \mu L$[/tex]

D. [tex]$3.5 \times 10^{10} \mu L$[/tex]



Answer :

To determine the volume of the pond in microliters (\(\mu L\)), we need to go through a series of unit conversions. We'll convert the given volume in kiloliters (kL) to liters (L), and then convert liters to microliters (\(\mu L\)).

Step 1: Convert kiloliters to liters

We know that there are 1,000 liters in 1 kiloliter.
The volume of the pond is 35 kiloliters.

[tex]\[ 35 \, \text{kL} \times 1,000 \, \frac{\text{L}}{\text{kL}} = 35,000 \, \text{L} \][/tex]

Step 2: Convert liters to microliters

We know that there are \(1 \times 10^6\) (1,000,000) microliters in 1 liter.
Now, we need to convert 35,000 liters to microliters.

[tex]\[ 35,000 \, \text{L} \times 1,000,000 \, \frac{\mu\text{L}}{\text{L}} = 35,000 \, \times \, 1,000,000 \, \mu \text{L} \][/tex]

This involves multiplying 35,000 by \(10^6\):

[tex]\[ 35,000 \times 1,000,000 = 35 \times 10^3 \times 10^6 = 35 \times 10^{3+6} = 35 \times 10^9 = 3.5 \times 10^{10} \, \mu \text{L} \][/tex]

So, the volume of the pond in microliters is \(3.5 \times 10^{10} \mu \text{L}\).

Final Answer:

The correct option is:
[tex]\[ 3.5 \times 10^{10} \mu \text{L} \][/tex]