Use the drawing tool(s) to form the correct answer on the provided number line.

A company manufactures rectangular cardboard boxes. Each box is 20 inches long and 15 inches wide. The heights of the boxes range from 4 to 6 inches.

Plot the range of possible values for the volume of the boxes.

[tex]\[
\begin{tabular}{|l|}
\hline
Drawing Tools \\
\hline
Select \\
Point \\
Line Segment \\
Ray \\
\hline
\end{tabular}
\][/tex]

Click on a tool to begin drawing.
Undo
Reset



Answer :

To determine the range of possible values for the volume of these boxes, follow these steps:

1. Identify Dimensions: The dimensions of each cardboard box are:
- Length \( L = 20 \) inches
- Width \( W = 15 \) inches
- Heights ranging from \( H_{\text{min}} = 4 \) inches to \( H_{\text{max}} = 6 \) inches

2. Calculate Minimum Volume:
- Minimum Height \( H_{\text{min}} = 4 \) inches
- Minimum Volume \( V_{\text{min}} = L \times W \times H_{\text{min}} = 20 \times 15 \times 4 \)
- So, \( V_{\text{min}} = 1200 \) cubic inches

3. Calculate Maximum Volume:
- Maximum Height \( H_{\text{max}} = 6 \) inches
- Maximum Volume \( V_{\text{max}} = L \times W \times H_{\text{max}} = 20 \times 15 \times 6 \)
- So, \( V_{\text{max}} = 1800 \) cubic inches

Now we can plot this range on a number line. We plot the numbers 1200 (minimum volume) and 1800 (maximum volume) to show the range.

Using the Line Segment Tool:
1. Place a point at 1200 to denote the lower bound of the volume.
2. Place another point at 1800 to denote the upper bound of the volume.
3. Draw a line segment connecting these two points to illustrate the continuous range of possible volumes from 1200 to 1800 cubic inches.

Your number line should look like this:

```
|------|---------------------------------------------------------------------------|------|
... 1200 1500 1800 ...
```

This number line indicates that the possible volumes of the cardboard boxes range continuously from 1200 to 1800 cubic inches.