```markdown
6
\begin{tabular}{|l|l|l|}
\hline \\
\hline & & \\
\hline
\end{tabular}

Monomio por término independiente.

[tex]$4(y)=$[/tex]

[tex]$(ab) 2=$[/tex]

[tex]$3(3 b')=$[/tex]

[tex]$12(y^2)=$[/tex]

[tex]$(x^2 y) 5=$[/tex]

[tex]$(ab) \frac{1}{8}=$[/tex]

Monomio por monomio.

[tex]\[
\begin{array}{lll}
\equiv (2a)= & x(10x)= & 2a(4a)= \\
y(8y)= & a(8b)= & ab(2b)= \\
4b(8bc)= & 3x(xy)= & 9a(4ab)= \\
\end{array}
\][/tex]

[tex]$(8b) 9=$[/tex]

[tex]\[
\begin{array}{l}
4(2x)= \\
-3(8x)= \\
\end{array}
\][/tex]

Monomio por binomio.

\begin{tabular}{|c|c|c|}
\hline [tex]$x(5x-4)=$[/tex] & [tex]$2x(8x-3x)=$[/tex] & [tex]$(6b \div b) 7b=$[/tex] \\
\hline [tex]$4b(a-2b)=$[/tex] & [tex]$62(2x \div 3)=$[/tex] & [tex]$(3b-2a) 5ab=$[/tex] \\
\hline [tex]$(5b+2) 7b=$[/tex] & [tex]$x(8x \div 9y)=$[/tex] & [tex]$a(3a+4)=$[/tex] \\
\hline
\end{tabular}
```



Answer :

Sure! Let's tackle this question step by step.

### Monomial by Constant Term

We will multiply each monomial by the given constant term:

1. \( 4(y) = 4y \)
2. (ab) \( 2 = (ab) \cdot 2 = 2ab \)
3. \( 3(3 b') = 3 \cdot 3b' = 9b' \)
4. \( 12(y^2) = 12y^2 \)
5. \( (x^2 y) \cdot 5 = x^2 y \cdot 5 = 5x^2 y \)
6. (ab) \( \frac{1}{8} = ab \cdot \frac{1}{8} = \frac{ab}{8} \)

### Monomial by Monomial

Now, we multiply each pair of monomials:

1. \( 2a = 2a \)
2. \( x(10x) = x \cdot 10x = 10x^2 \)
3. \( 2a(4a) = 2a \cdot 4a = 8a^2 \)
4. \( y(8y) = y \cdot 8y = 8y^2 \)
5. \( a(8b) = a \cdot 8b = 8ab \)
6. \( ab(2b) = ab \cdot 2b = 2ab^2 \)
7. \( 4b(8bc) = 4b \cdot 8bc = 32b^2c \)
8. \( 3x(x y) = 3x \cdot xy = 3x^2y \)
9. \( 9a(4ab) = 9a \cdot 4ab = 36a^2b \)
10. \( (8b) \cdot 9 = 8b \cdot 9 = 72b \)
11. \( 4(2x) = 4 \cdot 2x = 8x \)
12. \( -3(8x) = -3 \cdot 8x = -24x \)

### Monomial by Binomial

Finally, we will distribute each monomial across the terms of the binomial:

1. \( x(5x - 4) = x \cdot 5x - x \cdot 4 = 5x^2 - 4x \)
2. \( 2x(8x - 3x) = 2x \cdot 8x - 2x \cdot 3x = 16x^2 - 6x^2 = 10x^2 \)
3. \( (6b \div b) \cdot 7b = 6 \cdot 7b = 42b \)
4. \( 4b(a - 2b) = 4b \cdot a - 4b \cdot 2b = 4ab - 8b^2 \)
5. \( 62 \left( \frac{2x}{3} \right) = 62 \cdot \frac{2x}{3} = \frac{124x}{3} \)
6. \( (3b - 2a) \cdot 5ab = 3b \cdot 5ab - 2a \cdot 5ab = 15ab^2 - 10a^2b \)
7. \( (5b + 2) \cdot 7b = 5b \cdot 7b + 2 \cdot 7b = 35b^2 + 14b \)
8. \( x \left( \frac{8x}{9y} \right) = x \cdot \frac{8x}{9y} = \frac{8x^2}{9y} \)
9. \( a(3a + 4) = a \cdot 3a + a \cdot 4 = 3a^2 + 4a \)

This completes the detailed step-by-step solution for the given problem.