What is the solution set of the quadratic inequality [tex]$x^2 - 5 \leq 0$[/tex]?

A. [tex]\{x \mid -5 \leq x \leq 5\}[/tex]

B. [tex]\{x \mid -\sqrt{5} \leq x \leq 5\}[/tex]

C. [tex]\{x \mid -5 \leq x \leq \sqrt{5}\}[/tex]

D. [tex]\{x \mid -\sqrt{5} \leq x \leq \sqrt{5}\}[/tex]



Answer :

To solve the quadratic inequality \( x^2 - 5 \leq 0 \), we need to determine the values of \( x \) that satisfy this condition.

1. Start with the given inequality:
[tex]\[ x^2 - 5 \leq 0 \][/tex]

2. Isolate \( x^2 \) by adding 5 to both sides of the inequality:
[tex]\[ x^2 \leq 5 \][/tex]

3. Take the square root of both sides to solve for \( x \).
- When taking the square root of a quadratic inequality, remember that we'll get both positive and negative roots:
[tex]\[ -\sqrt{5} \leq x \leq \sqrt{5} \][/tex]

4. Write the solution set:
[tex]\[ \{ x \mid -\sqrt{5} \leq x \leq \sqrt{5} \} \][/tex]

Thus, the solution set to the quadratic inequality \( x^2 - 5 \leq 0 \) is:

[tex]\[ \{ x \mid -\sqrt{5} \leq x \leq \sqrt{5} \} \][/tex]

Hence, the correct answer from the given options is:
[tex]\[ \boxed{\{ x \mid -\sqrt{5} \leq x \leq \sqrt{5} \}} \][/tex]