To find the slope of the line that contains the points \((-2, 7)\) and \((2, 3)\), we can use the slope formula. The slope \( m \) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, the coordinates given are:
[tex]\[
(x_1, y_1) = (-2, 7)
\][/tex]
[tex]\[
(x_2, y_2) = (2, 3)
\][/tex]
Substitute these values into the slope formula:
[tex]\[
m = \frac{3 - 7}{2 - (-2)}
\][/tex]
Simplify the numerator and the denominator:
[tex]\[
m = \frac{3 - 7}{2 + 2}
\][/tex]
[tex]\[
m = \frac{-4}{4}
\][/tex]
[tex]\[
m = -1
\][/tex]
Therefore, the slope of the line that passes through the points \((-2, 7)\) and \((2, 3)\) is:
[tex]\[
\boxed{-1}
\][/tex]
So, the correct answer is:
A. -1