Answer :
Sure, let's analyze each expression to identify the kinds of terms they include. We need to figure out whether each expression contains \( x \) terms, \( y \) terms, and/or integer terms.
### Expression 1: \( 3x + 2x + 3 + 6y \)
- \( x \) terms: Yes, it contains \( 3x \) and \( 2x \).
- \( y \) terms: Yes, it contains \( 6y \).
- Integers: Yes, it contains the constant term \( 3 \).
### Expression 2: \( 3y - 14 \)
- \( x \) terms: No, there are no \( x \) terms.
- \( y \) terms: Yes, it contains \( 3y \).
- Integers: Yes, it contains the constant term \( -14 \).
### Expression 3: \( x + 2y - 10 + 3y \)
- \( x \) terms: Yes, it contains \( x \).
- \( y \) terms: Yes, it contains \( 2y \) and \( 3y \).
- Integers: Yes, it contains the constant term \( -10 \).
### Expression 4: \( 72 - 68 \)
- \( x \) terms: No, there are no \( x \) terms.
- \( y \) terms: No, there are no \( y \) terms.
- Integers: Yes, it involves constant terms \( 72 \) and \( -68 \).
### Expression 5: \( x - 8 \)
- \( x \) terms: Yes, it contains \( x \).
- \( y \) terms: No, there are no \( y \) terms.
- Integers: Yes, it contains the constant term \( -8 \).
Summarizing the findings in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline \text{Expression} & x \, \text{terms} & y \, \text{terms} & \text{Integers} \\ \hline 1. \, 3x + 2x + 3 + 6y & \text{Yes} & \text{Yes} & \text{Yes} \\ \hline 2. \, 3y - 14 & \text{No} & \text{Yes} & \text{Yes} \\ \hline 3. \, x + 2y - 10 + 3y & \text{Yes} & \text{Yes} & \text{Yes} \\ \hline 4. \, 72 - 68 & \text{No} & \text{No} & \text{Yes} \\ \hline 5. \, x - 8 & \text{Yes} & \text{No} & \text{Yes} \\ \hline \end{tabular} \][/tex]
### Expression 1: \( 3x + 2x + 3 + 6y \)
- \( x \) terms: Yes, it contains \( 3x \) and \( 2x \).
- \( y \) terms: Yes, it contains \( 6y \).
- Integers: Yes, it contains the constant term \( 3 \).
### Expression 2: \( 3y - 14 \)
- \( x \) terms: No, there are no \( x \) terms.
- \( y \) terms: Yes, it contains \( 3y \).
- Integers: Yes, it contains the constant term \( -14 \).
### Expression 3: \( x + 2y - 10 + 3y \)
- \( x \) terms: Yes, it contains \( x \).
- \( y \) terms: Yes, it contains \( 2y \) and \( 3y \).
- Integers: Yes, it contains the constant term \( -10 \).
### Expression 4: \( 72 - 68 \)
- \( x \) terms: No, there are no \( x \) terms.
- \( y \) terms: No, there are no \( y \) terms.
- Integers: Yes, it involves constant terms \( 72 \) and \( -68 \).
### Expression 5: \( x - 8 \)
- \( x \) terms: Yes, it contains \( x \).
- \( y \) terms: No, there are no \( y \) terms.
- Integers: Yes, it contains the constant term \( -8 \).
Summarizing the findings in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline \text{Expression} & x \, \text{terms} & y \, \text{terms} & \text{Integers} \\ \hline 1. \, 3x + 2x + 3 + 6y & \text{Yes} & \text{Yes} & \text{Yes} \\ \hline 2. \, 3y - 14 & \text{No} & \text{Yes} & \text{Yes} \\ \hline 3. \, x + 2y - 10 + 3y & \text{Yes} & \text{Yes} & \text{Yes} \\ \hline 4. \, 72 - 68 & \text{No} & \text{No} & \text{Yes} \\ \hline 5. \, x - 8 & \text{Yes} & \text{No} & \text{Yes} \\ \hline \end{tabular} \][/tex]