\begin{tabular}{|c|c|c|}
\hline Place & Is a city & Is in North America \\
\hline Rome & [tex]$\checkmark$[/tex] & \\
\hline Tokyo & [tex]$\checkmark$[/tex] & \\
\hline Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline Peru & & \\
\hline Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline Canada & & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}

A place from this table is chosen at random. Let event [tex]$A$[/tex] = The place is a city.

What is [tex]$P\left(A^C\right)$[/tex]?
A. [tex]$\frac{4}{7}$[/tex]
B. [tex]$\frac{3}{7}$[/tex]
C. [tex]$\frac{5}{7}$[/tex]
D. [tex]$\frac{2}{7}$[/tex]



Answer :

To determine the probability \( P(A^C) \), where \( A \) is the event that a place is a city, we first need to identify all the places that are not cities and then calculate their probability.

Let's start by examining the provided table:

[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline Rome & [tex]$\times$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & [tex]$\times$[/tex] & \\
\hline
Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & [tex]$\times$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}
\][/tex]

We are given that \( A \) represents the event that a place is a city. Therefore, \( A^C \) represents the event that a place is not a city.

From the table:

- The total number of places is \( 7 \).
- The places that are not cities are:
- Rome
- Peru
- Canada

There are \( 3 \) places that are not cities (Rome, Peru, and Canada).

The probability \( P(A^C) \) is calculated as:
[tex]\[ P(A^C) = \frac{\text{Number of places that are not cities}}{\text{Total number of places}} = \frac{3}{7} \][/tex]

Thus, the answer is:

[tex]\[ \boxed{\frac{3}{7}} \][/tex]

Therefore, the correct answer is:

B. [tex]\( \frac{3}{7} \)[/tex]