Answer:
[tex]\text{the probability of choosing 2 red balls without replacement}=\displaystyle\bf\frac{1}{7}[/tex]
Step-by-step explanation:
We can find the probability of choosing 2 red balls without replacement by using the probability formula:
[tex]\boxed{P(A)=\frac{n(A)}{n(S)} }[/tex]
where:
Let:
1st turn:
Then:
[tex]\begin{aligned}P(A)&=\frac{n(A)}{n(S)} \\\\&=\frac{6}{15} \\\\&=\frac{2}{5} \end{aligned}[/tex]
2nd turn:
Then:
[tex]\begin{aligned}P(B)&=\frac{n(B)}{n(S)} \\\\&=\frac{5}{14} \end{aligned}[/tex]
Probability of choosing 2 red balls without replacement:
[tex]\begin{aligned}P(A\cap B)&=P(A)\times P(B)\\\\&=\frac{2}{5} \times\frac{5}{14} \\\\&=\bf\frac{1}{7} \end{aligned}[/tex]