The circumference of a sphere was measured to be [tex]$86 \, \text{cm}[tex]$[/tex] with a possible error of [tex]$[/tex]0.5 \, \text{cm}$[/tex].

(a) Use differentials to estimate the maximum error (in [tex]\text{cm}^2[/tex]) in the calculated surface area. (Round your answer to the nearest integer.)

Maximum error: [tex]\square \, \text{cm}^2[/tex]

What is the relative error? (Round your answer to three decimal places.)

Relative error: [tex]\square[/tex]

(b) Use differentials to estimate the maximum error (in [tex]\text{cm}^3[/tex]) in the calculated volume. (Round your answer to the nearest integer.)

Maximum error: [tex]\square \, \text{cm}^3[/tex]

What is the relative error? (Round your answer to three decimal places.)

Relative error: [tex]\square[/tex]



Answer :

Let's solve the problem step-by-step:

Given data:
- Circumference of the sphere, \( C = 86 \, \text{cm} \)
- Possible error in the circumference, \( \delta C = 0.5 \, \text{cm} \)

### Part (a)
To estimate the maximum error in the surface area:

1. Determine the radius \( r \) of the sphere:

The circumference \( C \) of a sphere is related to the radius \( r \) by the formula:
[tex]\[ C = 2 \pi r \][/tex]
Solving for \( r \):
[tex]\[ r = \frac{C}{2 \pi} \][/tex]

2. Calculate the error in the radius \( \delta r \):

Given the error in the circumference \( \delta C \), the error in the radius \( \delta r \) can be found using:
[tex]\[ \delta r = \frac{\delta C}{2 \pi} \][/tex]

3. Find the surface area \( A \) of the sphere:

The surface area \( A \) of a sphere is given by:
[tex]\[ A = 4 \pi r^2 \][/tex]

4. Use differentials to estimate the maximum error \( \delta A \) in the surface area:

Using the derivative, the maximum error in \( A \) can be approximated by:
[tex]\[ \delta A \approx \left| \frac{dA}{dr} \right| \delta r \][/tex]
Since \( \frac{dA}{dr} = 8 \pi r \), we have:
[tex]\[ \delta A \approx 8 \pi r \delta r \][/tex]

Substituting \( r = \frac{C}{2 \pi} \) and \( \delta r = \frac{\delta C}{2 \pi} \), we get:
[tex]\[ \delta A \approx 8 \pi \left( \frac{C}{2 \pi} \right) \left( \frac{\delta C}{2 \pi} \right) \][/tex]
Simplifying this expression and substituting the given values, the maximum error \( \delta A \) in the surface area is:
[tex]\[ \delta A \approx 27 \, \text{cm}^2 \][/tex]

5. Calculate the relative error in the surface area:

The relative error is given by:
[tex]\[ \text{Relative error} = \frac{\delta A}{A} \][/tex]
Substituting the correct values, the relative error is:
[tex]\[ \text{Relative error} \approx 0.012 \][/tex]

### Part (b)
To estimate the maximum error in the volume:

1. Find the volume \( V \) of the sphere:

The volume \( V \) of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

2. Use differentials to estimate the maximum error \( \delta V \) in the volume:

Using the derivative, the maximum error in \( V \) can be approximated by:
[tex]\[ \delta V \approx \left| \frac{dV}{dr} \right| \delta r \][/tex]
Since \( \frac{dV}{dr} = 4 \pi r^2 \), we have:
[tex]\[ \delta V \approx 4 \pi r^2 \delta r \][/tex]

Substituting \( r = \frac{C}{2 \pi} \) and \( \delta r = \frac{\delta C}{2 \pi} \), we get:
[tex]\[ \delta V \approx 4 \pi \left( \frac{C}{2 \pi} \right)^2 \left( \frac{\delta C}{2 \pi} \right) \][/tex]
Simplifying this expression and substituting the given values, the maximum error \( \delta V \) in the volume is:
[tex]\[ \delta V \approx 187 \, \text{cm}^3 \][/tex]

3. Calculate the relative error in the volume:

The relative error is given by:
[tex]\[ \text{Relative error} = \frac{\delta V}{V} \][/tex]
Substituting the correct values, the relative error is:
[tex]\[ \text{Relative error} \approx 0.017 \][/tex]

Final answers:
- Maximum error in the calculated surface area: \( 27 \, \text{cm}^2 \)
- Relative error in the surface area: \( 0.012 \)
- Maximum error in the calculated volume: \( 187 \, \text{cm}^3 \)
- Relative error in the volume: [tex]\( 0.017 \)[/tex]