Certainly! Let's determine the values for the specified chi-square quantities, rounding each answer to two decimal places.
(a) The value for \(\chi^2_{0.05, 5}\) is:
[tex]\[
1.15
\][/tex]
(b) The value for \(\chi^2_{0.05, 10}\) is:
[tex]\[
3.94
\][/tex]
(c) The value for \(\chi^2_{0.01, 10}\) is:
[tex]\[
2.56
\][/tex]
(d) The value for \(\chi^2_{0.005, 10}\) is:
[tex]\[
2.16
\][/tex]
(e) The value for \(\chi^2_{0.99, 10}\) is:
[tex]\[
23.21
\][/tex]
(f) The value for \(\chi^2_{0.925, 10}\) is:
[tex]\[
16.97
\][/tex]
These are the chi-square values rounded to two decimal places for the given degrees of freedom and significance levels.