If [tex]\tan \alpha = \frac{15}{8}, \quad 0^{\circ} \ \textless \ \alpha \ \textless \ 90^{\circ}[/tex], then find the exact value of each of the following:

a. [tex]\sin \frac{\alpha}{2} = \square[/tex]
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

b. [tex]\cos \frac{\alpha}{2} = \square[/tex]
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

c. [tex]\tan \frac{\alpha}{2} = \square[/tex]
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)



Answer :

Given that \(\tan \alpha = \frac{15}{8}\) and \(0^\circ < \alpha < 90^\circ\), let's find the exact values of \(\sin \frac{\alpha}{2}\), \(\cos \frac{\alpha}{2}\), and \(\tan \frac{\alpha}{2}\).

### Step-by-Step Solution

Step 1: Calculate \(\sec \alpha\)

From the identity \(1 + \tan^2 \alpha = \sec^2 \alpha\), we have:

[tex]\[ \sec \alpha = \sqrt{1 + \tan^2 \alpha} \][/tex]

[tex]\[ \sec \alpha = \sqrt{1 + \left(\frac{15}{8}\right)^2} \][/tex]

[tex]\[ \sec \alpha = \sqrt{1 + \frac{225}{64}} \][/tex]

[tex]\[ \sec \alpha = \sqrt{\frac{64 + 225}{64}} \][/tex]

[tex]\[ \sec \alpha = \sqrt{\frac{289}{64}} \][/tex]

[tex]\[ \sec \alpha = \frac{\sqrt{289}}{\sqrt{64}} \][/tex]

[tex]\[ \sec \alpha = \frac{17}{8} \][/tex]

Step 2: Calculate \(\cos \alpha\)

Since \(\sec \alpha = \frac{1}{\cos \alpha}\), we have:

[tex]\[ \cos \alpha = \frac{1}{\sec \alpha} \][/tex]

[tex]\[ \cos \alpha = \frac{1}{\frac{17}{8}} \][/tex]

[tex]\[ \cos \alpha = \frac{8}{17} \][/tex]

Step 3: Calculate \(\sin \alpha\)

Using the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\), we have:

[tex]\[ \sin^2 \alpha = 1 - \cos^2 \alpha \][/tex]

[tex]\[ \sin^2 \alpha = 1 - \left(\frac{8}{17}\right)^2 \][/tex]

[tex]\[ \sin^2 \alpha = 1 - \frac{64}{289} \][/tex]

[tex]\[ \sin^2 \alpha = \frac{289 - 64}{289} \][/tex]

[tex]\[ \sin^2 \alpha = \frac{225}{289} \][/tex]

[tex]\[ \sin \alpha = \sqrt{\frac{225}{289}} \][/tex]

[tex]\[ \sin \alpha = \frac{15}{17} \][/tex]

Step 4: Calculate \(\sin \frac{\alpha}{2}\)

Using the half-angle formula for sine, \(\sin \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{2}}\):

[tex]\[ \sin \frac{\alpha}{2} = \sqrt{\frac{1 - \frac{8}{17}}{2}} \][/tex]

[tex]\[ \sin \frac{\alpha}{2} = \sqrt{\frac{\frac{17 - 8}{17}}{2}} \][/tex]

[tex]\[ \sin \frac{\alpha}{2} = \sqrt{\frac{\frac{9}{17}}{2}} \][/tex]

[tex]\[ \sin \frac{\alpha}{2} = \sqrt{\frac{9}{34}} \][/tex]

[tex]\[ \sin \frac{\alpha}{2} = \frac{\sqrt{9}}{\sqrt{34}} \][/tex]

[tex]\[ \sin \frac{\alpha}{2} = \frac{3}{\sqrt{34}} \][/tex]

Step 5: Calculate \(\cos \frac{\alpha}{2}\)

Using the half-angle formula for cosine, \(\cos \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}}\):

[tex]\[ \cos \frac{\alpha}{2} = \sqrt{\frac{1 + \frac{8}{17}}{2}} \][/tex]

[tex]\[ \cos \frac{\alpha}{2} = \sqrt{\frac{\frac{17 + 8}{17}}{2}} \][/tex]

[tex]\[ \cos \frac{\alpha}{2} = \sqrt{\frac{\frac{25}{17}}{2}} \][/tex]

[tex]\[ \cos \frac{\alpha}{2} = \sqrt{\frac{25}{34}} \][/tex]

[tex]\[ \cos \frac{\alpha}{2} = \frac{\sqrt{25}}{\sqrt{34}} \][/tex]

[tex]\[ \cos \frac{\alpha}{2} = \frac{5}{\sqrt{34}} \][/tex]

Step 6: Calculate \(\tan \frac{\alpha}{2}\)

Using the half-angle formula for tangent, \(\tan \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}\):

[tex]\[ \tan \frac{\alpha}{2} = \sqrt{\frac{1 - \frac{8}{17}}{1 + \frac{8}{17}}} \][/tex]

[tex]\[ \tan \frac{\alpha}{2} = \sqrt{\frac{\frac{9}{17}}{\frac{25}{17}}} \][/tex]

[tex]\[ \tan \frac{\alpha}{2} = \sqrt{\frac{9}{25}} \][/tex]

[tex]\[ \tan \frac{\alpha}{2} = \frac{\sqrt{9}}{\sqrt{25}} \][/tex]

[tex]\[ \tan \frac{\alpha}{2} = \frac{3}{5} \][/tex]

### Answers

a. \(\sin \frac{\alpha}{2} = \frac{3}{\sqrt{34}}\)

b. \(\cos \frac{\alpha}{2} = \frac{5}{\sqrt{34}}\)

c. [tex]\(\tan \frac{\alpha}{2} = \frac{3}{5}\)[/tex]

Other Questions