Multiply: [tex]6 x^2 y^4\left(5 x^2-3 x^2 y^2+4 y^2\right)[/tex]

A. [tex]11 x^4 y^4+3 x^4 y^6+10 x^2 y^6[/tex]

B. [tex]30 x^4 y^4-18 x^4 y^8+24 x^2 y^8[/tex]

C. [tex]30 x^4 y^4-3 x^2 y^2+4 y^2[/tex]

D. [tex]30 x^4 y^4-18 x^4 y^6+24 x^2 y^6[/tex]



Answer :

To properly solve the problem \( 6x^2y^4(5x^2 - 3x^2y^2 + 4y^2) \), we will distribute \( 6x^2y^4 \) to each term inside the parentheses. Let's go through this step-by-step.

1. Distribute \( 6x^2y^4 \) to \( 5x^2 \):
[tex]\[ 6x^2y^4 \cdot 5x^2 = 6 \cdot 5 \cdot x^2 \cdot x^2 \cdot y^4 = 30x^4y^4 \][/tex]

2. Distribute \( 6x^2y^4 \) to \(-3x^2y^2\):
[tex]\[ 6x^2y^4 \cdot (-3x^2y^2) = 6 \cdot (-3) \cdot x^2 \cdot x^2 \cdot y^4 \cdot y^2 = -18x^4y^6 \][/tex]

3. Distribute \( 6x^2y^4 \) to \( 4y^2 \):
[tex]\[ 6x^2y^4 \cdot 4y^2 = 6 \cdot 4 \cdot x^2 \cdot y^4 \cdot y^2 = 24x^2y^6 \][/tex]

Now, combine the results:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]

Therefore, the multiplied expression simplifies to:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]

Among the given options, the correct answer is:
[tex]\[ \boxed{30x^4y^4 - 18x^4y^6 + 24x^2y^6} \][/tex]

Other Questions