Calculating Distance in the Coordinate Plane

Point [tex]$C$[/tex] has the coordinates [tex]$(-1, 4)$[/tex] and point [tex]$D$[/tex] has the coordinates [tex]$(2, 0)$[/tex]. What is the distance between points [tex]$C$[/tex] and [tex]$D$[/tex]?

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

______ units



Answer :

To find the distance between points \( C \) and \( D \) in the coordinate plane, we will use the distance formula, which is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Given:
- Point \( C \) has coordinates \((-1, 4)\).
- Point \( D \) has coordinates \((2, 0)\).

First, identify the coordinates:

- \( x_1 = -1 \)
- \( y_1 = 4 \)
- \( x_2 = 2 \)
- \( y_2 = 0 \)

Next, calculate the differences \( x_2 - x_1 \) and \( y_2 - y_1 \):

[tex]\[ x_2 - x_1 = 2 - (-1) = 2 + 1 = 3 \][/tex]

[tex]\[ y_2 - y_1 = 0 - 4 = -4 \][/tex]

Now, substitute these differences into the distance formula:

[tex]\[ d = \sqrt{(3)^2 + (-4)^2} \][/tex]

Calculate the squares:

[tex]\[ (3)^2 = 9 \][/tex]

[tex]\[ (-4)^2 = 16 \][/tex]

Add these squares together:

[tex]\[ 9 + 16 = 25 \][/tex]

Finally, take the square root to find the distance:

[tex]\[ d = \sqrt{25} = 5 \][/tex]

Therefore, the distance between points \( C \) and \( D \) is:

[tex]\[ 5 \text{ units} \][/tex]