Answer :
Sure, let's break down the problem step-by-step:
### Step 1: Convert mixed fractions to improper fractions
For the first cardboard:
- Length: \( 2 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 2 \frac{1}{5} = 2 + \frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5} \][/tex]
- Breadth: \( 1 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 1 \frac{1}{5} = 1 + \frac{1}{5} = \frac{5}{5} + \frac{1}{5} = \frac{6}{5} \][/tex]
For the second cardboard:
- Length: \( 3 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 3 \frac{1}{5} = 3 + \frac{1}{5} = \frac{15}{5} + \frac{1}{5} = \frac{16}{5} \][/tex]
- Breadth: \( 2 \frac{2}{5} \) converts to an improper fraction:
[tex]\[ 2 \frac{2}{5} = 2 + \frac{2}{5} = \frac{10}{5} + \frac{2}{5} = \frac{12}{5} \][/tex]
### Step 2: Calculate the area of each cardboard
For the first cardboard:
[tex]\[ \text{Area}_1 = \frac{11}{5} \times \frac{6}{5} = \frac{66}{25} = 2.64 \text{ square meters} \][/tex]
For the second cardboard:
[tex]\[ \text{Area}_2 = \frac{16}{5} \times \frac{12}{5} = \frac{192}{25} = 7.68 \text{ square meters} \][/tex]
### Step 3: Calculate the area of one small piece from each cardboard
Since each cardboard is divided into 10 equal smaller pieces:
For the first cardboard:
[tex]\[ \text{Area of one small piece}_1 = \frac{2.64 \text{ m}^2}{10} = 0.264 \text{ square meters} \][/tex]
For the second cardboard:
[tex]\[ \text{Area of one small piece}_2 = \frac{7.68 \text{ m}^2}{10} = 0.768 \text{ square meters} \][/tex]
### Step 4: Calculate the total area of the new cardboard
The new cardboard is made by using 5 pieces from the first cardboard and 3 pieces from the second cardboard:
[tex]\[ \text{Total area} = (5 \times \text{Area of one small piece}_1) + (3 \times \text{Area of one small piece}_2) \][/tex]
[tex]\[ \text{Total area} = (5 \times 0.264) + (3 \times 0.768) \][/tex]
[tex]\[ \text{Total area} = 1.32 + 2.304 \][/tex]
[tex]\[ \text{Total area} = 3.624 \text{ square meters} \][/tex]
### Final Answer:
The total area of the new cardboard is [tex]\(3.624 \text{ square meters}\)[/tex].
### Step 1: Convert mixed fractions to improper fractions
For the first cardboard:
- Length: \( 2 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 2 \frac{1}{5} = 2 + \frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5} \][/tex]
- Breadth: \( 1 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 1 \frac{1}{5} = 1 + \frac{1}{5} = \frac{5}{5} + \frac{1}{5} = \frac{6}{5} \][/tex]
For the second cardboard:
- Length: \( 3 \frac{1}{5} \) converts to an improper fraction:
[tex]\[ 3 \frac{1}{5} = 3 + \frac{1}{5} = \frac{15}{5} + \frac{1}{5} = \frac{16}{5} \][/tex]
- Breadth: \( 2 \frac{2}{5} \) converts to an improper fraction:
[tex]\[ 2 \frac{2}{5} = 2 + \frac{2}{5} = \frac{10}{5} + \frac{2}{5} = \frac{12}{5} \][/tex]
### Step 2: Calculate the area of each cardboard
For the first cardboard:
[tex]\[ \text{Area}_1 = \frac{11}{5} \times \frac{6}{5} = \frac{66}{25} = 2.64 \text{ square meters} \][/tex]
For the second cardboard:
[tex]\[ \text{Area}_2 = \frac{16}{5} \times \frac{12}{5} = \frac{192}{25} = 7.68 \text{ square meters} \][/tex]
### Step 3: Calculate the area of one small piece from each cardboard
Since each cardboard is divided into 10 equal smaller pieces:
For the first cardboard:
[tex]\[ \text{Area of one small piece}_1 = \frac{2.64 \text{ m}^2}{10} = 0.264 \text{ square meters} \][/tex]
For the second cardboard:
[tex]\[ \text{Area of one small piece}_2 = \frac{7.68 \text{ m}^2}{10} = 0.768 \text{ square meters} \][/tex]
### Step 4: Calculate the total area of the new cardboard
The new cardboard is made by using 5 pieces from the first cardboard and 3 pieces from the second cardboard:
[tex]\[ \text{Total area} = (5 \times \text{Area of one small piece}_1) + (3 \times \text{Area of one small piece}_2) \][/tex]
[tex]\[ \text{Total area} = (5 \times 0.264) + (3 \times 0.768) \][/tex]
[tex]\[ \text{Total area} = 1.32 + 2.304 \][/tex]
[tex]\[ \text{Total area} = 3.624 \text{ square meters} \][/tex]
### Final Answer:
The total area of the new cardboard is [tex]\(3.624 \text{ square meters}\)[/tex].
Answer:
3.624m^2
Step-by-step explanation:
Given:
- First Cardboard
Length - 2 1/5 m
Breadth - 1 1/5 m - Second Cardboard
Length - 3 1/5 m
Breadth - 2 2/5 m
What is an Area
Area is the amount of space inside the boundary of a two-dimensional flat shape
What is a rectangle
A rectangle is a 4-sided flat shape with straight sides, where all interior angles are right angles (90 degrees) and opposite sides are parallel and of equal length
Solution
- Find the area of the first and second cardboard
Area = Length * Breadth
First CardBpard
Area = [tex]2 \frac{1}{5} \times 1 \frac{1}{5} \implies \frac{(5 \times 2) + 1}{5} \times \frac{(5 \times 1) + 1}{5}[/tex]
Note: The verbal formula is [tex]\frac{(\text{Denominator} \times \text{Whole Number}) + \text{Numerator}}{\text{Denominator}}[/tex]
Area = [tex]\frac{11}{5} \times \frac{6}{5}[/tex]
Area = [tex]\frac{66}{25} {\text{m}}^{2}[/tex]
Second CardBoard
Area = [tex]3 \frac{1}{5} \times 2 \frac{2}{5} \implies \frac{(5 \times 3) + 1}{5} \times \frac{(5 \times 2) + 2}{5}[/tex]
Area = [tex]\frac{16}{5} \times \frac{12}{5}[/tex]
Area = [tex]\frac{192}{25} {\text{m}}^{2}[/tex] - Find one-tenth of the value of both cardboard (first and second)
[tex]\begin{tabular}{p{0.45\textwidth} p{0.45\textwidth}}\textbf{First CardBoard} & \textbf{Second CardBoard} \\Dividing the fraction by multiplying it with the inverse of 10 & Dividing the fraction by multiplying it with the inverse of 10 \\ \\Area$_2$ = $\frac{66}{25} {\text{m}}^{2} \times \frac{1}{10}$ & Area$_2$ = $\frac{192}{25} {\text{m}}^{2} \times \frac{1}{10}$ \\ \\Area$_2$ = $\frac{66}{250} {\text{m}}^{2}$ & Area$_2$ = $\frac{192}{250} {\text{m}}^{2}$ \\\end{tabular}}[/tex]
First Cardboard
- Divide the fraction by multiplying it with the inverse of 10
- Area2 = (66/25 m²) × (1/10)
- Area2 = 66/250 m²
Second Cardboard
- Divide the fraction by multiplying it with the inverse of 10
- Area2 = (192/25 m²) × (1/10)
- Area2 = 192/250 m² - Finding the total area
Total Area = (Area_2 of first cardboard * 5) + (Area_2 of the second cardboard * 3)
Total Area = [tex](\frac{66}{250} {\text{m}}^{2} \times 5) + (\frac{192}{250} {\text{m}}^{2} \times 3)[/tex]
Total Area = [tex](\frac{330}{250} {\text{m}}^{2}) + (\frac{576}{250} {\text{m}}^{2})[/tex]
Total Area = [tex]\frac{906}{250} {\text{m}}^{2} \rightarrow 3.624 {\text{m}}^{2}[/tex]
Therefore, the total area of the cardboard if made using 5 smaller pieces from the first cardboard and 3 smaller pieces from the second cardboard simplifies to:
[tex]\boxed{3.624m^2 }[/tex]