The table below shows a monopolist's demand curve and the cost information for the production of its good. What will their profits equal?

[tex]\[
\begin{array}{ccc}
\text{Quantity} & \text{Price per Unit} & \text{Total Cost} \\
10 & \[tex]$ 100 & \$[/tex] 100 \\
20 & \[tex]$ 80 & \$[/tex] 400 \\
30 & \[tex]$ 60 & \$[/tex] 800 \\
40 & \[tex]$ 40 & \$[/tex] 1,400 \\
50 & \[tex]$ 20 & \$[/tex] 2,400 \\
\end{array}
\][/tex]

A. \$ 1,200

B. \$ 1,600

C. \$ 1,000

D. \$ 600



Answer :

To determine the profit for each quantity level provided in the table, we need to follow a systematic calculation. Profit is defined as the difference between total revenue and total cost. Here's the step-by-step solution:

1. Calculate Total Revenue:
- For each quantity level, the total revenue is calculated by multiplying the quantity by the price per unit.

2. Calculate Profit:
- The profit for each quantity level is the difference between the total revenue and the total cost.

Let's break down the calculations for each quantity level:

1. Quantity: 10
- Price per Unit: \$100
- Total Cost: \$100

- Total Revenue = Quantity × Price per Unit = 10 × \[tex]$100 = \$[/tex]1,000
- Profit = Total Revenue - Total Cost = \[tex]$1,000 - \$[/tex]100 = \$900

2. Quantity: 20
- Price per Unit: \$80
- Total Cost: \$400

- Total Revenue = Quantity × Price per Unit = 20 × \[tex]$80 = \$[/tex]1,600
- Profit = Total Revenue - Total Cost = \[tex]$1,600 - \$[/tex]400 = \$1,200

3. Quantity: 30
- Price per Unit: \$60
- Total Cost: \$800

- Total Revenue = Quantity × Price per Unit = 30 × \[tex]$60 = \$[/tex]1,800
- Profit = Total Revenue - Total Cost = \[tex]$1,800 - \$[/tex]800 = \$1,000

4. Quantity: 40
- Price per Unit: \$40
- Total Cost: \$1,400

- Total Revenue = Quantity × Price per Unit = 40 × \[tex]$40 = \$[/tex]1,600
- Profit = Total Revenue - Total Cost = \[tex]$1,600 - \$[/tex]1,400 = \$200

5. Quantity: 50
- Price per Unit: \$20
- Total Cost: \$2,400

- Total Revenue = Quantity × Price per Unit = 50 × \[tex]$20 = \$[/tex]1,000
- Profit = Total Revenue - Total Cost = \[tex]$1,000 - \$[/tex]2,400 = -\$1,400

Summarizing the profits for each quantity level, we have:
- For Quantity 10: \$900
- For Quantity 20: \$1,200
- For Quantity 30: \$1,000
- For Quantity 40: \$200
- For Quantity 50: -\$1,400

The completion of these steps yields the profit values:
[tex]\[ [\[tex]$900, \$[/tex]1,200, \[tex]$1,000, \$[/tex]200, -\$1,400] \][/tex]

From the options provided, the relevant value that matches one of the calculated profits is \$1,200.