Answer :
Let's analyze the given question step-by-step with the provided table values.
We have a function \( g(x) \) defined for specific values of \( x \) and their corresponding outputs \( g(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline [tex]$x$[/tex] & -1 & 0 & 7 & 10 \\
\hline [tex]$g (x)$[/tex] & 6 & 2 & -3 & 4 \\
\hline
\end{tabular}
\][/tex]
The task is to determine the output values for \( g(x) \) based on the \( x \) values presented in the table.
1. When \( x = -1 \):
[tex]\[ g(-1) = 6 \][/tex]
2. When \( x = 0 \):
[tex]\[ g(0) = 2 \][/tex]
3. When \( x = 7 \):
[tex]\[ g(7) = -3 \][/tex]
4. When \( x = 10 \):
[tex]\[ g(10) = 4 \][/tex]
Thus, the sequence of outputs for \( g(x) \) when \( x \) is taken as -1, 0, 7, and 10 respectively, is:
[tex]\[ \boxed{[6, 2, -3, 4]} \][/tex]
Therefore, the resulting outputs from the function [tex]\( g(x) \)[/tex] for the given values of [tex]\( x \)[/tex] are [tex]\( 6, 2, -3, \)[/tex] and [tex]\( 4 \)[/tex].
We have a function \( g(x) \) defined for specific values of \( x \) and their corresponding outputs \( g(x) \):
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline [tex]$x$[/tex] & -1 & 0 & 7 & 10 \\
\hline [tex]$g (x)$[/tex] & 6 & 2 & -3 & 4 \\
\hline
\end{tabular}
\][/tex]
The task is to determine the output values for \( g(x) \) based on the \( x \) values presented in the table.
1. When \( x = -1 \):
[tex]\[ g(-1) = 6 \][/tex]
2. When \( x = 0 \):
[tex]\[ g(0) = 2 \][/tex]
3. When \( x = 7 \):
[tex]\[ g(7) = -3 \][/tex]
4. When \( x = 10 \):
[tex]\[ g(10) = 4 \][/tex]
Thus, the sequence of outputs for \( g(x) \) when \( x \) is taken as -1, 0, 7, and 10 respectively, is:
[tex]\[ \boxed{[6, 2, -3, 4]} \][/tex]
Therefore, the resulting outputs from the function [tex]\( g(x) \)[/tex] for the given values of [tex]\( x \)[/tex] are [tex]\( 6, 2, -3, \)[/tex] and [tex]\( 4 \)[/tex].