For the quadratic equation [tex]\(-3x^2 + 4x + 1 = 0\)[/tex], enter the correct values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], and then set up the quadratic formula.

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

[tex]\( a = \)[/tex] [tex]\(\square\)[/tex]

[tex]\( b = \)[/tex] [tex]\(\square\)[/tex]

[tex]\( c = \)[/tex] [tex]\(\square\)[/tex]

[tex]\[ x = \frac{-\square \pm \sqrt{\square^2 - 4(\square)(\square)}}{2(\square)} \][/tex]



Answer :

Alright, let's proceed step-by-step to fill in the values for the given quadratic equation [tex]\(-3x^2 + 4x + 1 = 0\)[/tex].

1. Identifying coefficients:

For the quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex]:
- [tex]\(a = -3\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 1\)[/tex]

2. Substituting coefficients into the quadratic formula:

The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substituting the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:

[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(-3)(1)}}{2(-3)} \][/tex]

So, the values we should enter are:

[tex]\( a = -3 \)[/tex]

[tex]\( b = 4 \)[/tex]

[tex]\( c = 1 \)[/tex]

Thus, the quadratic formula becomes:

[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(-3)(1)}}{2(-3)} \][/tex]