Answer :

To find the product of the expression [tex]\((y + 3)(5y + 1)\)[/tex], we can use the distributive property, sometimes referred to as the FOIL method (First, Outer, Inner, Last). Let's go through each step of the process.

1. First: Multiply the first terms in each binomial.
[tex]\[ y \cdot 5y = 5y^2 \][/tex]

2. Outer: Multiply the outer terms in each binomial.
[tex]\[ y \cdot 1 = y \][/tex]

3. Inner: Multiply the inner terms in each binomial.
[tex]\[ 3 \cdot 5y = 15y \][/tex]

4. Last: Multiply the last terms in each binomial.
[tex]\[ 3 \cdot 1 = 3 \][/tex]

Next, we add all these results together:
[tex]\[ 5y^2 + y + 15y + 3 \][/tex]

Now, combine the like terms (the terms involving [tex]\(y\)[/tex]):
[tex]\[ y + 15y = 16y \][/tex]

Therefore, the simplified expression is:
[tex]\[ 5y^2 + 16y + 3 \][/tex]

So, the product of [tex]\((y+3)(5y+1)\)[/tex] simplified is:
[tex]\[ 5y^2 + 16y + 3 \][/tex]