Select the correct answer from each drop-down menu.

Given the vectors [tex] w = \langle -5, 3 \rangle [/tex] and [tex] z = \langle 1, 4 \rangle [/tex], find the results of the vector subtractions.

[tex]
\begin{array}{l}
-w - z = \square \\
z - w = \square \\
w - z = \square \\
\end{array}
[/tex]



Answer :

To find the results of the given vector subtractions, follow these steps:

1. Calculate [tex]\(-w\)[/tex]:

Given [tex]\( w = \langle -5, 3 \rangle \)[/tex], to find [tex]\(-w\)[/tex], we multiply each component by [tex]\(-1\)[/tex]:
[tex]\[ -w = \langle -(-5), -(3) \rangle = \langle 5, -3 \rangle \][/tex]

2. Calculate [tex]\(-w - z\)[/tex]:

Now, using [tex]\(-w = \langle 5, -3 \rangle\)[/tex] and [tex]\(z = \langle 1, 4 \rangle\)[/tex], we perform the vector subtraction:
[tex]\[ -w - z = \langle 5 - 1, -3 - 4 \rangle = \langle 4, -7 \rangle \][/tex]
So, [tex]\(-w - z = \langle 4, -7 \rangle\)[/tex].

3. Calculate [tex]\(z - w\)[/tex]:

Given [tex]\(z = \langle 1, 4 \rangle\)[/tex] and [tex]\(w = \langle -5, 3 \rangle\)[/tex], we perform the vector subtraction:
[tex]\[ z - w = \langle 1 - (-5), 4 - 3 \rangle = \langle 1 + 5, 4 - 3 \rangle = \langle 6, 1 \rangle \][/tex]
So, [tex]\(z - w = \langle 6, 1 \rangle\)[/tex].

4. Calculate [tex]\(w - z\)[/tex]:

Given [tex]\(w = \langle -5, 3 \rangle\)[/tex] and [tex]\(z = \langle 1, 4 \rangle\)[/tex], we perform the vector subtraction:
[tex]\[ w - z = \langle -5 - 1, 3 - 4 \rangle = \langle -6, -1 \rangle \][/tex]
So, [tex]\(w - z = \langle -6, -1 \rangle\)[/tex].

Thus, the correct answers are:
[tex]\[ \begin{array}{l} -w - z = \langle 4, -7 \rangle \\ z - w = \langle 6, 1 \rangle \\ w - z = \langle -6, -1 \rangle \\ \end{array} \][/tex]