Answer :
Certainly! Let's break this problem down step-by-step.
Given the system of equations:
[tex]\[ \begin{cases} 2x + 8y = 7 \\ 4x - 2y = 9 \end{cases} \][/tex]
We want to represent these equations in the form [tex]\( A X = C \)[/tex]:
- [tex]\( A \)[/tex] is the matrix containing the coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- [tex]\( X \)[/tex] is the column matrix of the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- [tex]\( C \)[/tex] is the column matrix of the constants on the right hand side of the equations.
The system can be written as:
[tex]\[ \begin{pmatrix} 2 & 8 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
From this, we identify:
[tex]\[ A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & -2 \end{pmatrix} \][/tex]
Now we can extract the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], [tex]\( c \)[/tex], and [tex]\( d \)[/tex] directly:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 8 \)[/tex]
- [tex]\( d = -2 \)[/tex]
Next, we need to find the value of [tex]\( a - b + c + d \)[/tex]:
[tex]\[ a - b + c + d = 2 - 4 + 8 - 2 \][/tex]
Calculating step by step:
[tex]\[ 2 - 4 = -2 \][/tex]
[tex]\[ -2 + 8 = 6 \][/tex]
[tex]\[ 6 - 2 = 4 \][/tex]
Thus, the value of [tex]\( a - b + c + d \)[/tex] is:
[tex]\[ 4 \][/tex]
Therefore, the final result is:
[tex]\[ a - b + c + d = 4 \][/tex]
Given the system of equations:
[tex]\[ \begin{cases} 2x + 8y = 7 \\ 4x - 2y = 9 \end{cases} \][/tex]
We want to represent these equations in the form [tex]\( A X = C \)[/tex]:
- [tex]\( A \)[/tex] is the matrix containing the coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- [tex]\( X \)[/tex] is the column matrix of the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- [tex]\( C \)[/tex] is the column matrix of the constants on the right hand side of the equations.
The system can be written as:
[tex]\[ \begin{pmatrix} 2 & 8 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \][/tex]
From this, we identify:
[tex]\[ A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & -2 \end{pmatrix} \][/tex]
Now we can extract the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], [tex]\( c \)[/tex], and [tex]\( d \)[/tex] directly:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 8 \)[/tex]
- [tex]\( d = -2 \)[/tex]
Next, we need to find the value of [tex]\( a - b + c + d \)[/tex]:
[tex]\[ a - b + c + d = 2 - 4 + 8 - 2 \][/tex]
Calculating step by step:
[tex]\[ 2 - 4 = -2 \][/tex]
[tex]\[ -2 + 8 = 6 \][/tex]
[tex]\[ 6 - 2 = 4 \][/tex]
Thus, the value of [tex]\( a - b + c + d \)[/tex] is:
[tex]\[ 4 \][/tex]
Therefore, the final result is:
[tex]\[ a - b + c + d = 4 \][/tex]