Answer :

To find the cube root of the fraction [tex]\(\frac{27}{1000}\)[/tex], follow these steps:

1. Understand the fraction: You need to take the cube root of [tex]\(\frac{27}{1000}\)[/tex].

2. Separate the numerator and denominator: Express the fraction as two separate parts under the cube root.
[tex]\[ \sqrt[3]{\frac{27}{1000}} = \frac{\sqrt[3]{27}}{\sqrt[3]{1000}} \][/tex]

3. Find the cube root of the numerator: Calculate the cube root of 27.
[tex]\[ \sqrt[3]{27} = 3 \quad \text{(since } 3^3 = 27\text{)} \][/tex]

4. Find the cube root of the denominator: Calculate the cube root of 1000.
[tex]\[ \sqrt[3]{1000} = 10 \quad \text{(since } 10^3 = 1000\text{)} \][/tex]

5. Combine the results: Put the cube roots of the numerator and the denominator back into the fraction.
[tex]\[ \frac{\sqrt[3]{27}}{\sqrt[3]{1000}} = \frac{3}{10} \][/tex]

6. Convert to decimal: Finally, convert [tex]\(\frac{3}{10}\)[/tex] to decimal form.
[tex]\[ \frac{3}{10} = 0.3 \][/tex]

Putting it all together, the cube root of [tex]\(\frac{27}{1000}\)[/tex] is:
[tex]\[ \sqrt[3]{\frac{27}{1000}} = 0.3 \][/tex]

So,
[tex]\[ \sqrt[3]{\frac{27}{1000}} = 0.30000000000000004 \][/tex]
(Note that the slight discrepancy from 0.3 is due to numerical precision in floating-point calculations.)