Given the following system of equations, what is the value of [tex] y [/tex]?

[tex]\[
\left\{
\begin{array}{l}
2x - 6y = 12 \\
-6x + 14y = 42
\end{array}
\right.
\][/tex]



Answer :

To find the value of [tex]\( y \)[/tex] in the given system of equations, let's follow these steps:

The system of equations is:
[tex]\[ \begin{cases} 2x - 6y = 12 \\ -6x + 14y = 42 \end{cases} \][/tex]

### Step 1: Simplify the equations if possible

First, check if the equations can be simplified:

For the first equation:
[tex]\[ 2x - 6y = 12 \][/tex]
Divide both sides by 2:
[tex]\[ x - 3y = 6 \][/tex]

For the second equation:
[tex]\[ -6x + 14y = 42 \][/tex]
Divide both sides by 2 for simplicity:
[tex]\[ -3x + 7y = 21 \][/tex]

So, the simplified system of equations is:
[tex]\[ \begin{cases} x - 3y = 6 \\ -3x + 7y = 21 \end{cases} \][/tex]

### Step 2: Solve one equation for one variable

Solve the first equation for [tex]\( x \)[/tex]:
[tex]\[ x - 3y = 6 \][/tex]
[tex]\[ x = 6 + 3y \][/tex]

### Step 3: Substitute this expression into the second equation

Substitute [tex]\( x = 6 + 3y \)[/tex] into the second equation:
[tex]\[ -3(6 + 3y) + 7y = 21 \][/tex]
Expand and simplify:
[tex]\[ -18 - 9y + 7y = 21 \][/tex]
Combine like terms:
[tex]\[ -18 - 2y = 21 \][/tex]

### Step 4: Solve for [tex]\( y \)[/tex]

Add 18 to both sides:
[tex]\[ -2y = 39 \][/tex]
Divide both sides by -2:
[tex]\[ y = -\frac{39}{2} \][/tex]

Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -\frac{39}{2} \][/tex]