Select the correct answer.

The endpoints of [tex]\overline{GH}[/tex] are [tex]G(10, 1)[/tex] and [tex]H(3, 5)[/tex]. What is the midpoint of [tex]\overline{GH}[/tex]?

A. [tex](-4, 9)[/tex]
B. [tex]\left(\frac{7}{2}, 2\right)[/tex]
C. [tex]\left(\frac{13}{2}, 3\right)[/tex]
D. [tex](13, 6)[/tex]



Answer :

To find the midpoint of a line segment with endpoints [tex]\( G(x_1, y_1) \)[/tex] and [tex]\( H(x_2, y_2) \)[/tex], we use the midpoint formula, which is given by:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

For the endpoints [tex]\( G(10, 1) \)[/tex] and [tex]\( H(3, 5) \)[/tex], let's apply the formula step by step:

1. Calculate the x-coordinate of the midpoint:

[tex]\[ \frac{x_1 + x_2}{2} = \frac{10 + 3}{2} = \frac{13}{2} = 6.5 \][/tex]

2. Calculate the y-coordinate of the midpoint:

[tex]\[ \frac{y_1 + y_2}{2} = \frac{1 + 5}{2} = \frac{6}{2} = 3 \][/tex]

Therefore, the coordinates of the midpoint of [tex]\( \overline{GH} \)[/tex] are [tex]\( (6.5, 3) \)[/tex].

Based on these calculations, the correct answer is:

C. [tex]\(\left(\frac{13}{2}, 3\right)\)[/tex]