There are [tex]\( n \)[/tex] geometric means (GMs) between [tex]\(\frac{1}{25}\)[/tex] and 25. If the ratio of the first mean to the fifth mean is [tex]\(1:25\)[/tex], find [tex]\(n\)[/tex].



Answer :

Certainly! Let's walk through the steps to find the number of geometric means [tex]\( n \)[/tex] between [tex]\( \frac{1}{25} \)[/tex] and 25, given that the ratio of the first geometric mean ([tex]\( G_1 \)[/tex]) to the fifth geometric mean ([tex]\( G_5 \)[/tex]) is [tex]\( 1:25 \)[/tex].

### Step-by-Step Solution:

1. Identify the values:
- The first term ([tex]\( A \)[/tex]) is [tex]\( \frac{1}{25} \)[/tex].
- The last term ([tex]\( B \)[/tex]) is 25.

2. General Formula for the terms of a geometric sequence:
- Let the ratio between consecutive terms be [tex]\( r \)[/tex].
- Therefore, the sequence would be:
[tex]\[ \frac{1}{25}, \ G_1, \ G_2, \ \ldots, \ G_n, \ 25 \][/tex]
- The terms in this sequence can be expressed as:
[tex]\[ G_1 = \left(\frac{1}{25}\right) r, \quad G_2 = \left(\frac{1}{25}\right) r^2, \quad \ldots, \quad G_n = \left(\frac{1}{25}\right) r^n \][/tex]

3. Given information:
- The ratio of the first geometric mean to the fifth geometric mean is given by:
[tex]\[ \frac{G_1}{G_5} = \frac{\left(\frac{1}{25}\right) r}{\left(\frac{1}{25}\right) r^5} = \frac{1}{r^4} = \frac{1}{25} \][/tex]

4. Solve for [tex]\( r \)[/tex]:
- From the equation:
[tex]\[ \frac{1}{r^4} = \frac{1}{25} \][/tex]
We obtain:
[tex]\[ r^4 = 25 \][/tex]
- Taking the fourth root of both sides, we find:
[tex]\[ r = \sqrt[4]{25} = \left(25\right)^{\frac{1}{4}} \approx 2.23606797749979 \][/tex]

5. Find [tex]\( n \)[/tex]:
- The sequence ends with the term [tex]\( 25 \)[/tex], which means:
[tex]\[ 25 = \left(\frac{1}{25}\right) r^{n+1} \][/tex]
- Substituting the value of [tex]\( r \)[/tex]:
[tex]\[ 25 = \left(\frac{1}{25}\right) \left(2.23606797749979\right)^{n+1} \][/tex]
- Simplify:
[tex]\[ 25 = \frac{\left(2.23606797749979\right)^{n+1}}{25} \][/tex]
- Multiply both sides by 25:
[tex]\[ 625 = \left(2.23606797749979\right)^{n+1} \][/tex]
- Take the logarithm of both sides (base 10 or natural logarithm):
[tex]\[ \log(625) = (n+1) \log(2.23606797749979) \][/tex]
- Solve for [tex]\( n+1 \)[/tex]:
[tex]\[ n+1 = \frac{\log(625)}{\log(2.23606797749979)} \approx 8 \][/tex]
- Hence, [tex]\( n \)[/tex] is:
[tex]\[ n = 8 - 1 \approx 7 \][/tex]

Therefore, the number of geometric means [tex]\( n \)[/tex] between [tex]\( \frac{1}{25} \)[/tex] and 25 is approximately 7.