Answer :
Sure, let's solve each equation step by step:
1. [tex]\( \boxed{ -7 } \)[/tex]
This equation is straightforward; the answer is simply [tex]\(-7\)[/tex].
2. [tex]\(-2(-4 - x) - y^2\)[/tex]
Let's break it down:
- Start with the expression inside the parentheses: [tex]\((-4 - x)\)[/tex]. For simplicity, we assume [tex]\(x = 0\)[/tex].
- Now, multiply by [tex]\(-2\)[/tex]: [tex]\(-2 \times (-4 - 0) = -2 \times -4 = 8\)[/tex].
- Finally, subtract [tex]\(y^2\)[/tex]. If [tex]\(y = 0\)[/tex], then [tex]\(y^2 = 0\)[/tex], so the equation simplifies to [tex]\(8 - 0 = 8\)[/tex].
Thus, the result for this equation is [tex]\(8\)[/tex].
3. [tex]\(2 - \frac{2}{2} (x = 2\pi - x)\)[/tex]
Steps:
- Calculate [tex]\(x\)[/tex]: [tex]\(x = 2\pi - x\)[/tex]. Assume initial [tex]\(x = 0\)[/tex], then [tex]\(x = 2\pi\)[/tex].
- Substitute [tex]\(x\)[/tex] back into the equation: [tex]\(2 - \frac{2}{2} \cdot 2\pi\)[/tex].
- Simplify: [tex]\(\frac{2}{2} = 1\)[/tex], so the equation becomes [tex]\(2 - 1 \cdot 2\pi\)[/tex] which is [tex]\(2 - 2\pi\)[/tex].
Thus, the result for this equation is approximately [tex]\(-4.283185307179586\)[/tex] (since [tex]\(\pi \approx 3.141592653589793\)[/tex], [tex]\(2\pi \approx 6.283185307179586\)[/tex]; [tex]\(2 - 6.283185307179586 = -4.283185307179586\)[/tex]).
4. [tex]\(-x = 3 - s^2\)[/tex]
Steps:
- Assume [tex]\(s = 0\)[/tex], then [tex]\(s^2 = 0\)[/tex].
- Substitute [tex]\(s^2\)[/tex] back into the equation: [tex]\(-x = 3 - 0\)[/tex].
- Solve for [tex]\(x\)[/tex]: [tex]\(-x = 3\)[/tex], hence [tex]\(x = -3\)[/tex].
Thus, the result for this equation is [tex]\(-3\)[/tex].
5. [tex]\(4 - 2 \times (20) - 26\)[/tex]
Steps:
- Multiply: [tex]\(2 \times 20 = 40\)[/tex].
- Substitute in the equation: [tex]\(4 - 40 - 26\)[/tex].
- Simplify: [tex]\(4 - 40 = -36\)[/tex], and [tex]\(-36 - 26 = -62\)[/tex].
Thus, the result for this equation is [tex]\(-62\)[/tex].
6. [tex]\(-18 - 2\)[/tex]
This is a straightforward subtraction:
- [tex]\(-18 - 2 = -20\)[/tex].
Thus, the result for this equation is [tex]\(-20\)[/tex].
So, the final answers for each equation are:
1. [tex]\(-7\)[/tex]
2. [tex]\(8\)[/tex]
3. [tex]\(-4.283185307179586\)[/tex]
4. [tex]\(-3\)[/tex]
5. [tex]\(-62\)[/tex]
6. [tex]\(-20\)[/tex]
1. [tex]\( \boxed{ -7 } \)[/tex]
This equation is straightforward; the answer is simply [tex]\(-7\)[/tex].
2. [tex]\(-2(-4 - x) - y^2\)[/tex]
Let's break it down:
- Start with the expression inside the parentheses: [tex]\((-4 - x)\)[/tex]. For simplicity, we assume [tex]\(x = 0\)[/tex].
- Now, multiply by [tex]\(-2\)[/tex]: [tex]\(-2 \times (-4 - 0) = -2 \times -4 = 8\)[/tex].
- Finally, subtract [tex]\(y^2\)[/tex]. If [tex]\(y = 0\)[/tex], then [tex]\(y^2 = 0\)[/tex], so the equation simplifies to [tex]\(8 - 0 = 8\)[/tex].
Thus, the result for this equation is [tex]\(8\)[/tex].
3. [tex]\(2 - \frac{2}{2} (x = 2\pi - x)\)[/tex]
Steps:
- Calculate [tex]\(x\)[/tex]: [tex]\(x = 2\pi - x\)[/tex]. Assume initial [tex]\(x = 0\)[/tex], then [tex]\(x = 2\pi\)[/tex].
- Substitute [tex]\(x\)[/tex] back into the equation: [tex]\(2 - \frac{2}{2} \cdot 2\pi\)[/tex].
- Simplify: [tex]\(\frac{2}{2} = 1\)[/tex], so the equation becomes [tex]\(2 - 1 \cdot 2\pi\)[/tex] which is [tex]\(2 - 2\pi\)[/tex].
Thus, the result for this equation is approximately [tex]\(-4.283185307179586\)[/tex] (since [tex]\(\pi \approx 3.141592653589793\)[/tex], [tex]\(2\pi \approx 6.283185307179586\)[/tex]; [tex]\(2 - 6.283185307179586 = -4.283185307179586\)[/tex]).
4. [tex]\(-x = 3 - s^2\)[/tex]
Steps:
- Assume [tex]\(s = 0\)[/tex], then [tex]\(s^2 = 0\)[/tex].
- Substitute [tex]\(s^2\)[/tex] back into the equation: [tex]\(-x = 3 - 0\)[/tex].
- Solve for [tex]\(x\)[/tex]: [tex]\(-x = 3\)[/tex], hence [tex]\(x = -3\)[/tex].
Thus, the result for this equation is [tex]\(-3\)[/tex].
5. [tex]\(4 - 2 \times (20) - 26\)[/tex]
Steps:
- Multiply: [tex]\(2 \times 20 = 40\)[/tex].
- Substitute in the equation: [tex]\(4 - 40 - 26\)[/tex].
- Simplify: [tex]\(4 - 40 = -36\)[/tex], and [tex]\(-36 - 26 = -62\)[/tex].
Thus, the result for this equation is [tex]\(-62\)[/tex].
6. [tex]\(-18 - 2\)[/tex]
This is a straightforward subtraction:
- [tex]\(-18 - 2 = -20\)[/tex].
Thus, the result for this equation is [tex]\(-20\)[/tex].
So, the final answers for each equation are:
1. [tex]\(-7\)[/tex]
2. [tex]\(8\)[/tex]
3. [tex]\(-4.283185307179586\)[/tex]
4. [tex]\(-3\)[/tex]
5. [tex]\(-62\)[/tex]
6. [tex]\(-20\)[/tex]