Given [tex]$A=\{2,5,7,8\}$[/tex] and [tex]$B=\{1,5,7\}$[/tex], determine [tex][tex]$A \times B$[/tex][/tex].

[tex]\[
\begin{array}{|c|c|c|c|}
\hline
A \times B & 1 & 5 & 7 \\
\hline
2 & (2,1) & (2,5) & (2,7) \\
\hline
5 & (5,1) & (5,5) & (5,7) \\
\hline
7 & (7,1) & (7,5) & (7,7) \\
\hline
8 & (8,1) & (8,5) & (8,7) \\
\hline
\end{array}
\][/tex]



Answer :

To determine the Cartesian product [tex]\( A \times B \)[/tex] where [tex]\( A = \{2, 5, 7, 8\} \)[/tex] and [tex]\( B = \{1, 5, 7\} \)[/tex], we follow these steps:

1. The Cartesian product [tex]\( A \times B \)[/tex] is defined as the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \in A \)[/tex] and [tex]\( b \in B \)[/tex].

2. We produce each ordered pair [tex]\((a, b)\)[/tex] by taking each element [tex]\( a \)[/tex] from set [tex]\( A \)[/tex] and pairing it with each element [tex]\( b \)[/tex] from set [tex]\( B \)[/tex].

Let’s proceed with the calculations step by step as follows:

- For [tex]\( a = 2 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((2, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((2, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((2, 7)\)[/tex].

- For [tex]\( a = 5 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((5, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((5, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((5, 7)\)[/tex].

- For [tex]\( a = 7 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((7, 1)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((7, 5)\)[/tex].
- Pair with [tex]\( b = 8 \)[/tex] to get [tex]\((7, 7)\)[/tex].

- For [tex]\( a = 8 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((8, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((8, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((8, 7)\)[/tex].

Combining all these ordered pairs, we get:

[tex]\[ A \times B = \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\} \][/tex]

So, the Cartesian product [tex]\( A \times B \)[/tex] is:
[tex]\[ \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\}. \][/tex]

This is the complete set of ordered pairs that forms the Cartesian product of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex].