Evaluate the expression [tex]\((-3.8) + 2 + y\)[/tex] for the given values of [tex]\(y\)[/tex].

\begin{tabular}{|l|l|}
\hline
[tex]\(y\)[/tex] & Value of Expression \\
\hline
-2 & [tex]\(-3.8 + 2 - 2 = -3.8\)[/tex] \\
\hline
1.8 & [tex]\(-3.8 + 2 + 1.8 = 0\)[/tex] \\
\hline
0 & [tex]\(-3.8 + 2 + 0 = -1.8\)[/tex] \\
\hline
3.8 & [tex]\(-3.8 + 2 + 3.8 = 2\)[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's evaluate the expression [tex]\((-3.8) + 2 + y\)[/tex] for the given values of [tex]\( y \)[/tex].

1. For [tex]\( y = -2 \)[/tex]:

Substitute [tex]\( y = -2 \)[/tex] into the expression:
[tex]\[ (-3.8) + 2 + (-2) = -3.8 + 2 - 2 = -3.8 + 0 = -3.8 \][/tex]
So, the value of the expression for [tex]\( y = -2 \)[/tex] is [tex]\(-3.8\)[/tex].

2. For [tex]\( y = 1.8 \)[/tex]:

Substitute [tex]\( y = 1.8 \)[/tex] into the expression:
[tex]\[ (-3.8) + 2 + 1.8 = -3.8 + 2 + 1.8 = -3.8 + 3.8 \approx 2.220446049250313e-16 \][/tex]
So, the value of the expression for [tex]\( y = 1.8 \)[/tex] is approximately [tex]\( 2.220446049250313e-16 \)[/tex]. This is a very small number close to zero, which occurs due to floating-point arithmetic precision limits.

3. For [tex]\( y = 0 \)[/tex]:

Substitute [tex]\( y = 0 \)[/tex] into the expression:
[tex]\[ (-3.8) + 2 + 0 = -3.8 + 2 = -1.8 \][/tex]
So, the value of the expression for [tex]\( y = 0 \)[/tex] is approximately [tex]\(-1.7999999999999998\)[/tex], which is very close to [tex]\(-1.8\)[/tex].

4. For [tex]\( y = 3.8 \)[/tex]:

Substitute [tex]\( y = 3.8 \)[/tex] into the expression:
[tex]\[ (-3.8) + 2 + 3.8 = -3.8 + 2 + 3.8 = -3.8 + 3.8 + 2 = 2.0 \][/tex]
So, the value of the expression for [tex]\( y = 3.8 \)[/tex] is [tex]\( 2.0 \)[/tex].

The completed table is:

[tex]\[ \begin{tabular}{|c|c|} \hline \text{y} & \text{Value of expression} \\ \hline -2 & -3.8 \\ \hline 1.8 & 2.220446049250313e-16 \\ \hline 0 & -1.7999999999999998 \\ \hline 3.8 & 2.0 \\ \hline \end{tabular} \][/tex]