Answer :
Para resolver la pregunta sobre la función trigonométrica [tex]\( f(x) = 3 \sin\left(2x - \frac{\pi}{2}\right) + 4 \)[/tex], vamos a analizarla paso a paso:
1. Identificación de los parámetros de la función trigonométrica:
La forma general de una función seno es:
[tex]\[ f(x) = A \sin(Bx + C) + D \][/tex]
Donde:
- [tex]\(A\)[/tex] es la amplitud
- [tex]\(B\)[/tex] influye en el período
- [tex]\(C\)[/tex] es el desfase horizontal
- [tex]\(D\)[/tex] es el desplazamiento vertical
Para la función [tex]\( f(x) = 3 \sin(2x - \frac{\pi}{2}) + 4 \)[/tex]:
- [tex]\(A = 3\)[/tex]
- [tex]\(B = 2\)[/tex]
- [tex]\(C = -\frac{\pi}{2}\)[/tex]
- [tex]\(D = 4\)[/tex]
2. Cálculo de la amplitud:
La amplitud de una función seno [tex]\(\sin\)[/tex] está dada por el valor absoluto del coeficiente de la función seno:
[tex]\[ \text{Amplitud} = |A| = |3| = 3 \][/tex]
3. Cálculo del período:
El período de una función seno [tex]\(\sin\)[/tex] se calcula usando la fórmula:
[tex]\[ \text{Período} = \frac{2\pi}{|B|} \][/tex]
Para [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Período} = \frac{2\pi}{2} = \pi \][/tex]
4. Conclusión:
A partir de los cálculos anteriores, podemos afirmar que:
- La amplitud de la función es [tex]\(3\)[/tex].
- El período de la función es [tex]\(\pi\)[/tex].
Por lo tanto, la opción correcta es:
[tex]\[ \text{Período} = \pi, \text{Amplitud} = 3 \][/tex]
Las demás opciones no son correctas dado que no coinciden con los valores obtenidos para la amplitud y el período de la función analizada.
1. Identificación de los parámetros de la función trigonométrica:
La forma general de una función seno es:
[tex]\[ f(x) = A \sin(Bx + C) + D \][/tex]
Donde:
- [tex]\(A\)[/tex] es la amplitud
- [tex]\(B\)[/tex] influye en el período
- [tex]\(C\)[/tex] es el desfase horizontal
- [tex]\(D\)[/tex] es el desplazamiento vertical
Para la función [tex]\( f(x) = 3 \sin(2x - \frac{\pi}{2}) + 4 \)[/tex]:
- [tex]\(A = 3\)[/tex]
- [tex]\(B = 2\)[/tex]
- [tex]\(C = -\frac{\pi}{2}\)[/tex]
- [tex]\(D = 4\)[/tex]
2. Cálculo de la amplitud:
La amplitud de una función seno [tex]\(\sin\)[/tex] está dada por el valor absoluto del coeficiente de la función seno:
[tex]\[ \text{Amplitud} = |A| = |3| = 3 \][/tex]
3. Cálculo del período:
El período de una función seno [tex]\(\sin\)[/tex] se calcula usando la fórmula:
[tex]\[ \text{Período} = \frac{2\pi}{|B|} \][/tex]
Para [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Período} = \frac{2\pi}{2} = \pi \][/tex]
4. Conclusión:
A partir de los cálculos anteriores, podemos afirmar que:
- La amplitud de la función es [tex]\(3\)[/tex].
- El período de la función es [tex]\(\pi\)[/tex].
Por lo tanto, la opción correcta es:
[tex]\[ \text{Período} = \pi, \text{Amplitud} = 3 \][/tex]
Las demás opciones no son correctas dado que no coinciden con los valores obtenidos para la amplitud y el período de la función analizada.