What is [tex]\tan 60^{\circ}[/tex]?

A. [tex]\frac{2}{\sqrt{3}}[/tex]

B. 1

C. [tex]\frac{1}{\sqrt{3}}[/tex]

D. [tex]\frac{1}{2}[/tex]

E. [tex]\sqrt{3}[/tex]



Answer :

To determine the value of [tex]\(\tan 60^{\circ}\)[/tex], we can use the properties of a 30-60-90 triangle. In such a triangle, the ratios of the sides are well known.

A 30-60-90 triangle has its sides in the ratio:
- Opposite the 30° angle is [tex]\(a\)[/tex]
- Opposite the 60° angle is [tex]\(a \sqrt{3}\)[/tex]
- The hypotenuse is [tex]\(2a\)[/tex]

For [tex]\(\tan \theta\)[/tex], we use the definition of tangent in a right triangle:
[tex]\[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

Using these properties for the angle [tex]\(60^{\circ}\)[/tex]:
- The side opposite [tex]\(60^{\circ}\)[/tex] is [tex]\(a\sqrt{3}\)[/tex]
- The side adjacent to [tex]\(60^{\circ}\)[/tex] is [tex]\(a\)[/tex]

Thus,
[tex]\[ \tan 60^{\circ} = \frac{a \sqrt{3}}{a} = \sqrt{3} \][/tex]

Therefore, the value of [tex]\(\tan 60^{\circ}\)[/tex] is [tex]\(\sqrt{3}\)[/tex].

So, the correct answer is:

E. [tex]\(\sqrt{3}\)[/tex]