Solve for [tex]\( z \)[/tex]. Assume the equation has a solution for [tex]\( z \)[/tex].

[tex]\[
a \cdot (t + z) = 45z + 67
\][/tex]

[tex]\( z = \square \)[/tex]



Answer :

Sure, let's solve the equation for [tex]\( z \)[/tex] step by step.

The given equation is:

[tex]\[ a \cdot (t + z) = 45z + 67 \][/tex]

Here's the process of solving for [tex]\( z \)[/tex]:

1. Distribute [tex]\( a \)[/tex] on the left-hand side:
[tex]\[ at + az = 45z + 67 \][/tex]

2. Gather all terms involving [tex]\( z \)[/tex] on one side of the equation and constants on the other:
[tex]\[ az - 45z = 67 - at \][/tex]

3. Factor out [tex]\( z \)[/tex] from the left-hand side:
[tex]\[ z(a - 45) = 67 - at \][/tex]

4. Solve for [tex]\( z \)[/tex] by isolating it:
[tex]\[ z = \frac{67 - at}{a - 45} \][/tex]

Therefore, the solution for [tex]\( z \)[/tex] in the given equation is:

[tex]\[ z = \frac{67 - at}{a - 45} \][/tex]

This is the final solution.