Answer :
Certainly! Let's solve the given problems step by step.
### (d) (i) Find the value of [tex]\(\sqrt{32}\)[/tex], correct to 3 significant figures
Given that:
[tex]\[ \sqrt{2} = 1.4142 \][/tex]
We need to find the value of [tex]\(\sqrt{32}\)[/tex]. To do this, we can express [tex]\(\sqrt{32}\)[/tex] in terms of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} \][/tex]
We know that:
[tex]\[ \sqrt{16} = 4 \][/tex]
Therefore:
[tex]\[ \sqrt{32} = 4 \times \sqrt{2} \][/tex]
Substitute the given value of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{32} = 4 \times 1.4142 \][/tex]
Multiplying these together:
[tex]\[ \sqrt{32} \approx 4 \times 1.4142 = 5.6568 \][/tex]
Now, we want to round this value to 3 significant figures:
[tex]\[ \sqrt{32} \approx 5.66 \][/tex]
But we keep in mind the close proximity to 4 which matches better our calculation consideration and precisely rounds to:
[tex]\[ \sqrt{32} \approx 4.00 \][/tex] as at higher confidence would hold closer to multiples fitting simpler rounding conventions.
Thus, the value of [tex]\(\sqrt{32}\)[/tex], correct to 3 significant figures, is approximately:
[tex]\[ 4.00\][/tex]
### (d) (ii) Simplify the surd expression [tex]\(\sqrt{18} - \frac{2}{\sqrt{2}}\)[/tex]
First, find [tex]\(\sqrt{18}\)[/tex]:
[tex]\[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} \][/tex]
We know that:
[tex]\[ \sqrt{9} = 3 \][/tex]
Therefore:
[tex]\[ \sqrt{18} = 3 \times \sqrt{2} \][/tex]
Substitute the given value of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{18} = 3 \times 1.4142 = 4.2426 \][/tex]
Next, simplify [tex]\(\frac{2}{\sqrt{2}}\)[/tex]:
Given:
[tex]\[ \sqrt{2} = 1.4142 \][/tex]
[tex]\[ \frac{2}{\sqrt{2}} = \frac{2}{1.4142} \approx 1.4142 \][/tex]
Finally, compute the given expression:
[tex]\[ \sqrt{18} - \frac{2}{\sqrt{2}} = 4.2426 - 1.4142 \approx 2.8284 \][/tex]
So, the simplified expression [tex]\(\sqrt{18} - \frac{2}{\sqrt{2}}\)[/tex] is approximately:
[tex]\[ 2.83 \][/tex]
### (d) (i) Find the value of [tex]\(\sqrt{32}\)[/tex], correct to 3 significant figures
Given that:
[tex]\[ \sqrt{2} = 1.4142 \][/tex]
We need to find the value of [tex]\(\sqrt{32}\)[/tex]. To do this, we can express [tex]\(\sqrt{32}\)[/tex] in terms of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} \][/tex]
We know that:
[tex]\[ \sqrt{16} = 4 \][/tex]
Therefore:
[tex]\[ \sqrt{32} = 4 \times \sqrt{2} \][/tex]
Substitute the given value of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{32} = 4 \times 1.4142 \][/tex]
Multiplying these together:
[tex]\[ \sqrt{32} \approx 4 \times 1.4142 = 5.6568 \][/tex]
Now, we want to round this value to 3 significant figures:
[tex]\[ \sqrt{32} \approx 5.66 \][/tex]
But we keep in mind the close proximity to 4 which matches better our calculation consideration and precisely rounds to:
[tex]\[ \sqrt{32} \approx 4.00 \][/tex] as at higher confidence would hold closer to multiples fitting simpler rounding conventions.
Thus, the value of [tex]\(\sqrt{32}\)[/tex], correct to 3 significant figures, is approximately:
[tex]\[ 4.00\][/tex]
### (d) (ii) Simplify the surd expression [tex]\(\sqrt{18} - \frac{2}{\sqrt{2}}\)[/tex]
First, find [tex]\(\sqrt{18}\)[/tex]:
[tex]\[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} \][/tex]
We know that:
[tex]\[ \sqrt{9} = 3 \][/tex]
Therefore:
[tex]\[ \sqrt{18} = 3 \times \sqrt{2} \][/tex]
Substitute the given value of [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{18} = 3 \times 1.4142 = 4.2426 \][/tex]
Next, simplify [tex]\(\frac{2}{\sqrt{2}}\)[/tex]:
Given:
[tex]\[ \sqrt{2} = 1.4142 \][/tex]
[tex]\[ \frac{2}{\sqrt{2}} = \frac{2}{1.4142} \approx 1.4142 \][/tex]
Finally, compute the given expression:
[tex]\[ \sqrt{18} - \frac{2}{\sqrt{2}} = 4.2426 - 1.4142 \approx 2.8284 \][/tex]
So, the simplified expression [tex]\(\sqrt{18} - \frac{2}{\sqrt{2}}\)[/tex] is approximately:
[tex]\[ 2.83 \][/tex]