Lesson: Adding and Subtracting Simple Fractions

Question 12 of 12

Fill in the blanks:

[tex]\[ \frac{8}{9} + \frac{5}{9} + \frac{2}{3} = \square \][/tex]

[tex]\[\square\][/tex]



Answer :

Sure! Let’s break this down step-by-step for the given question which involves adding the fractions [tex]\(\frac{8}{9}\)[/tex], [tex]\(\frac{5}{9}\)[/tex], and [tex]\(\frac{2}{3}\)[/tex].

### Step 1: Identify the Common Denominator

Since two of the fractions already share a common denominator (9), we should aim to convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with the same common denominator of 9.

### Step 2: Convert [tex]\(\frac{2}{3}\)[/tex] to a Fraction with Denominator 9

To convert [tex]\(\frac{2}{3}\)[/tex] so that its denominator is 9, multiply both the numerator and the denominator by 3:

[tex]\[ \frac{2 \times 3}{3 \times 3} = \frac{6}{9} \][/tex]

Now we have:
[tex]\[ \frac{2}{3} = \frac{6}{9} \][/tex]

### Step 3: Add the Fractions Together

Now that all fractions have a common denominator, add their numerators:

[tex]\[ \frac{8}{9} + \frac{5}{9} + \frac{6}{9} \][/tex]

Combine the numerators over the common denominator:

[tex]\[ \frac{8 + 5 + 6}{9} \][/tex]

### Step 4: Sum of the Numerators

Add the numerators together:

[tex]\[ 8 + 5 + 6 = 19 \][/tex]

So, we have:

[tex]\[ \frac{19}{9} \][/tex]

### Step 5: Simplify the Fraction (if applicable)

Since [tex]\(\frac{19}{9}\)[/tex] is an improper fraction (the numerator is greater than the denominator), we can also express it as a mixed number:

[tex]\[ 19 \div 9 = 2 \text{ remainder } 1 \][/tex]

So, [tex]\(\frac{19}{9}\)[/tex] can be written as:

[tex]\[ 2 \frac{1}{9} \][/tex]

### Conclusion

Thus, the answer to the question [tex]\(\frac{8}{9} + \frac{5}{9} + \frac{2}{3}\)[/tex] is [tex]\(\frac{19}{9}\)[/tex] or equivalently [tex]\(2 \frac{1}{9}\)[/tex].

The final result is:
[tex]\[ 2.111111111111111 \][/tex]