\begin{tabular}{|c|c|c|}
\hline [tex]$X$[/tex] & [tex]$(x-\bar{x})$[/tex] & [tex]$(x-\bar{x})^2$[/tex] \\
\hline [tex]$4$[/tex] & -5 & 25 \\
\hline [tex]$5$[/tex] & -4 & 16 \\
\hline [tex]$10$[/tex] & 1 & 1 \\
\hline [tex]$11$[/tex] & 2 & 4 \\
\hline [tex]$15$[/tex] & 6 & 36 \\
\hline \multicolumn{3}{|c|}{ Sum [tex]$=82$[/tex]} \\
\hline
\end{tabular}

Round your answer to the nearest tenth.
A. 20.5
B. 4.1
C. 4.5
D. 16.4



Answer :

To solve this problem, let’s find the standard deviation of the given dataset step-by-step.

The dataset given is [tex]\( X = [4, 5, 10, 11, 15] \)[/tex].

### Step 1: Calculate the mean ([tex]\(\bar{x}\)[/tex])
The mean is the sum of all the data points divided by the number of data points.

[tex]\[ \bar{x} = \frac{\sum X}{n} \][/tex]

In this case:
[tex]\[ \bar{x} = \frac{4 + 5 + 10 + 11 + 15}{5} = \frac{45}{5} = 9 \][/tex]

So, the mean ([tex]\(\bar{x}\)[/tex]) is 9.

### Step 2: Calculate each deviation from the mean ([tex]\(x - \bar{x}\)[/tex])
Next, we'll find the difference between each data point and the mean:

For [tex]\( 4 \)[/tex]:
[tex]\[ 4 - 9 = -5 \][/tex]

For [tex]\( 5 \)[/tex]:
[tex]\[ 5 - 9 = -4 \][/tex]

For [tex]\( 10 \)[/tex]:
[tex]\[ 10 - 9 = 1 \][/tex]

For [tex]\( 11 \)[/tex]:
[tex]\[ 11 - 9 = 2 \][/tex]

For [tex]\( 15 \)[/tex]:
[tex]\[ 15 - 9 = 6 \][/tex]

### Step 3: Calculate the squared differences ([tex]\((x - \bar{x})^2\)[/tex])
We then square each of these differences:

For [tex]\( -5 \)[/tex]:
[tex]\[ (-5)^2 = 25 \][/tex]

For [tex]\( -4 \)[/tex]:
[tex]\[ (-4)^2 = 16 \][/tex]

For [tex]\( 1 \)[/tex]:
[tex]\[ 1^2 = 1 \][/tex]

For [tex]\( 2 \)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]

For [tex]\( 6 \)[/tex]:
[tex]\[ 6^2 = 36 \][/tex]

### Step 4: Calculate the variance
The variance is the mean of these squared differences.

[tex]\[ \text{Variance} = \frac{\text{Sum of squared differences}}{n} \][/tex]

Sum of squared differences:
[tex]\[ 25 + 16 + 1 + 4 + 36 = 82 \][/tex]

So,
[tex]\[ \text{Variance} = \frac{82}{5} = 16.4 \][/tex]

### Step 5: Calculate the standard deviation
The standard deviation is the square root of the variance.

[tex]\[ \text{Standard Deviation} = \sqrt{16.4} \approx 4.049691346263317 \][/tex]

### Step 6: Round the standard deviation to the nearest tenth
When we round 4.049691346263317 to the nearest tenth, we get 4.0.

Therefore, the answer is:

B. 4.1